• Title/Summary/Keyword: Rotating

Search Result 5,032, Processing Time 0.066 seconds

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

Vibration Analysis of a Rotating Cantilever Beam with Tip Mass Using DTM (끝단 집중 질량을 갖는 회전 외팔보의 DTM을 이용한 진동 해석)

  • Kim, Min-Ju;Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1058-1063
    • /
    • 2010
  • The vibration analysis of a rotating cantilever beam with tip mass was studied by using DTM(differential transformation method). DTM is one of the numerical methods, for finding series solutions by transforming differential equations to algebraic ones similar with Laplace transform. The advantages of the DTM are that it is easy to understand and is effective in finding numerical solutions. Applying DTM, the natural frequencies of a rotating cantilever beam were obtained taking into consideration the effects of tip mass. Also, convergence study of DTM was performed to decide the number of terms used in eigenvalue problems. Numerical results obtained by DTM show good agreement with those by other methods. As a result, it is expected that DTM can be a useful method in vibration analysis such as that of a rotating cantilever beam with tip mass.

Nondimensional Parametric Study of a Timoshenko Rotating Shaft Subject to Moving Mass and Compressive Axial Forces (이동질량과 압축력을 받는 티모센코 회전축의 무차원 변수 연구)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1201-1207
    • /
    • 2007
  • The Timoshenko beam theories are used to model the rotating shaft. The nondimensional equations of motion for the rotating shaft subjected to moving mass and compressive axial forces are derived by using Hamilton's principle. Influence of system parameters such as the speed ratio. the mass ratio and the Rayleigh coefficient is discussed on the response of the moving system. The effects of compressive axial forces are also included in the analysis. The results are presented and compared with the available solutions of a rotating shaft subject to a moving mass and a moving load.

Rotating Shaft Vibration Analysis of 200 kW, 15,000 rpm 3 Phase Induction Motor (200 kW급 15,000 rpm 3상 유도전동기의 회전축 진동해석)

  • Hong, D.K.;Koo, D.H.;Woo, B.C.;Hong, S.S.;Kwon, Y.S.;Kang, H.C.;Ahn, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • The purpose of this study is to design 200 kW, 15,000 rpm 3 phase induction motor. This research deals with natural frequency and mode shape of rotating shaft of 3 phase induction motor with bearing stiffness by finite element analysis. We present natural frequency characteristic variation of rotating shaft according to change bearing stiffness. Also we are verified stability of rotating shaft from backward and forward critical speed by campbell diagram.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass (끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

A Study on the Fault Diagnosis of Rotating Machinery Using Neural Network with Bispectrum (바이스펙트럼의 신경회로망 적용에 의한 회전기계 이상진단에 관한 연구)

  • Oh, J.E.;Lee, J.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.262-273
    • /
    • 1995
  • For rotating machinery with high speed and high efficiency, large labor and high expenses are required to conduct machine health monitoring. Therefore, it becomes necessary to develop new diagnosis technique which can detect abnormalities of the rotating machinery effectively. In this paper, it is identified that bispectrum analysis technique can be successfully applied to dectect the abnormalities of the roating machinery through computer simulation, and results of the bispectrum analysis are patterned in griding form. Further, pattern recognition technique using back propagation algorithm, which is one of neural network algorithm, being consisted of patterned input layer and output layer for abnormal status, is applied to detect the abnormalities of simulator which is able to make up various kinds of abnorml conditions(misalignment, unbalance, rubbing etc.) of the rotating machinery.

  • PDF

A Study on Rotating Arc Using Hollow Shaft Motor (중공축 모터를 이용한 회전아크에 관한 연구)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF

Finite Element Analysis of a Rotating Disc with a Corner Crack Originating at the Bolt Holes (회전체 원판의 볼트구멍에 존재하는 모서리균열의 유한요소해석)

  • 한상배;이진호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3055-3062
    • /
    • 1993
  • The objective of this paper is to obtain stress intensity factor solutions for a corner crack originating at bolt holes in a rotating disc. Initially two-dimensional finite element analyses of a rotating disc with bolt holes are performed to determine the maximum stress region. Subsequently three-dimensional finite element analyses of a rotating disc with a corner crack originating at the bolt holes are performed with a variety of crack geometries. According to the numerical results, the maximum stress intensity factor, with an increase in crack depth ratio, was observed at the surface of the plate due to the interference effect of corner crack and disc bore.

The Heat Transfer Characteristics of Rotating Heat Pipe with Tapered Condensers in the both Sides of Evaporator (증발부 양단에 테이퍼 응축기를 가진 회전형 히트파이프의 전열 특성)

  • 이기우;이영수;장기창;장영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-25
    • /
    • 1996
  • The purpose of this paper is to study heat transfer characteristics of rotating heat pipe with tapered condensers by numerical analysis and experimental method. An experimental investigation has been carried out on thermal resistance between condenser wall and vapor region fo the rotating heat pipe with various taper 0, 1/11.4, 1/38. Heat transfer characteristics by analytical study were applied to describe various Nu numbers on the base of dimensionless condensate film, Re and Pr numbers in both condensers. Comparison between calculated results and experimental data showed qualitatively good agreement and the numerical analysis of this study can be utilized to predict the performance of a rotating heat pipe. The thermal resistance can be decreased by increasing the revolution per minute. Regardless of various dimensionless condensate film, Nu number was largely influenced by saturation temperatures of working fluid.

  • PDF