• Title/Summary/Keyword: Rotary-Wing Aircraft

Search Result 45, Processing Time 0.028 seconds

Proposal of a Fail-Safe Requirement Analysis Procedure to Identify Critical Common Causes an Aircraft System (항공기 시스템의 치명적인 공통 요인을 식별하기 위한 고장-안전 요구분석 절차 제안)

  • Lim, San-Ha;Lee, Seon-ah;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.259-267
    • /
    • 2022
  • The existing method of deriving the fail-safe design requirements for the domestic developed rotary-wing aircraft system may miss the factors that cause critical system function failures, when being applied to the latest integrated avionics system. It is because the existing method analyzes the severity effect of the failures caused by a single item. To solve the issue, we present a systematic analysis procedure for deriving fail-safe design requirements of system architecture by utilizing functional hazard assessment and development assurance level analysis of SAE ARP4754A, international standard for complex system development. To demonstrate that our proposed procedure can be a solution for the aforementioned issue, we set up experimental environments that include common factors that can cause critical function failures of a system, and we conducted a cross-validation with the existing method. As a result, we showed that the proposed procedure can identify the potential critical common factors that the existing method have missed, and that the proposed procedure can derive fail-safe design requirements to control the common factors.

Flying-wing Type Compound Drone Design and Mission Accuracy Analysis (전익기형 복합드론의 설계 및 임무 정확도 연구)

  • Sung, Dong-gyu;Koh, Eun-hak;Kim, Ju-chan;Nam, Yong-hyeon;Lee, Jeong-ho;Lee, Jae-seung;Lee, Chan-bin;Jeon, Yeong-bae;Choi, Cheol-kyun;Lee, Jae woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.122-128
    • /
    • 2018
  • A compound drone that combines a fixed wing and a rotary wing is an aircraft that can take off and landing vertically, and can increase flight time and fly faster with fixed wings. The compound drones are divided into many types depending on the method of adding the thrust vectoring or the lift fan and the position of the rotor. In this study, we designed and fabricated a composite drone with four V-TOL motors in a fixed-wing, and assigned missions to the aviation body, hence judged mission accuracy using the actual flight test. The design process and the mission evaluation process employed in this study can be utilized on the development of various unmanned aerial vehicle.

Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections (헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구)

  • Lee, Hyeon-Jung;Jang, Jong-Youn;Lee, Seung-Soo;Kim, Beom-Soo;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.621-627
    • /
    • 2008
  • Aerodynamic data measured in a wind tunnel has inevitable errors due to the presence of the wind tunnel walls. These unwanted interference effects must be corrected for the wall interference free aerodynamic data. Streamline curvature effects are caused by straightening of streamlines due to wind tunnel walls. Classical Glauert's correction method that is a standard method for fixed wing aircraft is not suitable for rotary wing aircraft. In this paper, Heyson's correction method of which wake model is compatible with rotors is used to correct the rotor shaft angle as well as the dynamic pressure. The results of Heyson's method are compared with Glauert's correction method.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

A Model of a Mechanical Flight-Control System for Simulating Control Authority Switching of a Helicopter Technical Demonstrator (헬리콥터 기술시범기의 비행제어 조종권 전환 모의를 위한 기계식 조종장치 모델 설계 연구)

  • Yang, Chang Deok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Since the flight-control system is critical for the safety of an aircraft, a fail-safe system is needed in a flight demonstrator used to test a new flight-control system. A backup control system is also needed to ensure safety in using a mechanical flight-control system. This paper presents a development of an MFCS (Mechanical Flight Control System) model for simulating control authority switching of a helicopter technical demonstrator, as well as the results of evaluating the developed MFCS model.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

Structural Analysis for Newly Installed Blade Antenna of Rotorcraft (신규 블레이드 안테나 장착을 위한 노후 회전익 항공기 구조 해석 연구)

  • Yu, Jeong-O;Kim, Jae-Yong;Choi, Hang-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.106-112
    • /
    • 2021
  • In this study, we performed a design and structural analysis of a blade-shaped antenna installation on the rear fuselage of a rotary wing aircraft operated by the military. When the structure is damaged while the aircraft is in operation, it is separated from the aircraft main structure and may collide with the rotor or blades to cause the aircraft to crash. Therefore, structural safety for the modified structure must be secured. The design requirement for the newly installed modified part were established, and the load condition was constructed by applying the load that may occur in the aircraft after the modification. Structure safety for the modified structure was secured by performing structure analysis. To analysis stress and deformation of aircraft structure, we developed finite element model and verified it by using hand calculation method. We confirmed the safety of the modified structure through the final structural integrity analysis.

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

A Study on the Emphasis of Human Tolerance in the Crash Event (추락과정에서의 인체 허용한도 중요성 연구)

  • Hwang, Jungsun;Lee, Sangmok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.740-746
    • /
    • 2013
  • Design with crashworthiness concept has been emphasized for almost aircraft and motor vehicles. However, crashes accompanied serious injury and death have been continuously occurred, and will be occurred subsequently. What was worse, it is a well-known fact that there were a good many crashes classified as survivable accidents in which fatal injuries were reported. But we cannot say that fatal injuries were inevitable consequences of those crashes. If crashworthy design for seat, restraint systems, and cabin strength were adequate or right, survivability in a crash event could be maximized greatly. To substantiate the right crashworthiness, we must thoroughly understand the characteristics of human tolerance under abrupt acceleration change, and the cabin design should be combined with proper use of energy absorbing technologies that reduce accelerations experienced by the occupants. In this paper, the emphasis on the human tolerance under abrupt accelerations as well as the necessity of change in design requirements for crash environment will be stressed to widen the belt of consensus for the right crashworthy design.