• Title/Summary/Keyword: Rotary system

Search Result 748, Processing Time 0.03 seconds

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

A Study on the Development of Rotary Ultrasonic Machining Spindle (회전 초음파가공 주축 개발에 관한 연구)

  • Li, Chang-Ping;Kim, Min-Yeop;Park, Jong-Kweon;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.160-166
    • /
    • 2015
  • Ultrasonic machining (USM) has been considered a new, cutting-edge technology that presents no heating or electrochemical effects, with low surface damage and small residual stresses on brittle workpieces. However, nowadays, many researchers are paying careful attention to the disadvantages of USM, such as low productivity and tool wear. On the other hand, in this study, a high-performance rotary ultrasonic drilling (RUD) spindle is designed and assembled. In this system, the core technology is the design of an ultrasonic vibration horn for the spindle using finite element analysis (FEA). The maximum spindle speed of RUM is 9,600 rpm, and the highest harmonic displacement is $5.4{\mu}m$ noted at the frequency of 40 kHz. Through various drilling experiments on glass workpieces using a CVD diamond-coated drill, the cutting force and cracking of the hole entrance and exit side in the glass have been greatly reduced by this system.

Efficient 5-axis Machining of a Propeller using Geometric Properties (기하학적 특성을 이용한 프로펠러의 효율적인 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2020
  • The rotary feed axes of a 5-axis machine tool can increase the freedom of the tool posture, while reducing feed speed and rigidity. In addition, as a ball-end mill is inevitably used during machining by rotational feed, the step-over length is reduced compared to the flat-end mill, thereby reducing the material removal rate. Therefore, this study attempts to improve the material removal rate, feed speed, and machining stability using the corner radius flat-end mill and a fixed controlled machining method for the rotary feed axes during roughing. In addition, the tapered ball-end mill and simultaneously controlled machining method for the rotary feed axes were used for finishing to improve the propeller's 5-axis machining efficiency by enhancing the surface quality. In order to create the tool path effectively and easily, we propose a specific approach for using the propeller's geometric properties and evaluate the effectiveness of the proposed method by comparing it with the method of the dedicated module.

Metal Injection Molding Analysis for Developing Embroidering Machine Rotary Hooks (자수기용 로터리 훅 개발을 위한 금속분말 사출성형해석)

  • Kim, Sang-Yoon;Park, Bo-Gyu;Jung, Jae-Ok;Cho, Kyu-Sang;Chung, Ilsup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.160-168
    • /
    • 2018
  • Among the components of rotary hooks, a core component of an embroidery sewing system, a study was conducted to apply metal injection molding to the manufacture of a hook body and a housing that was very difficult to mechanical working. The correlation of feedstock, a mixture of binder and SCM 415 metal powder, and properties of the pressure-volume-temperature interrelationship, viscosity, specific heat, and thermal conductivity were measured. Injection molds for the hook body and the housing were developed through injection molding analysis using these properties and conducted injection tests. Optimal injection gate position and number, injection pressure, and injection time were obtained through a comparison of analysis results with the experiment results.

An Analytic and Experimental Study on the Performance Characteristic of the Rotary Compressor (로타리 압축기 성능특성에 관한 해석 및 실험)

  • 최득관;김경천;차강욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.497-504
    • /
    • 2001
  • A study to improve the accuracy of a map-based compressor model with experiment was performed. Corrections on the effects of suction gas superheat and heat leakage from a compressor shell are required to apply the compressor amp model based on the empirical performance data(map) of compressor manufacturers to the actual system. So experiments to assess the effects of superheat and hat leakage were performed and the corrected equations were made. Compressors and refrigerant used in the experiment were the high pressure type rotary compressor and R-22, experiments were performed by compressor calorimeter. From the experiment, a volumetric efficiency correction factor$(F_ν)$ showed the value of 0.77, slightly higher than 0.75 proposed by Dabiri and Rice for low pressure type reciprocating compressor, and the heat leakage from the compressor shell turned out to be a factor that influenced the discharged mass flow rate. The relation between heat leakage of compressor shell and the variation of discharged mass flow rate from compressor was considered in compressor map modeling as an empirical function. With this function, the prediction accuracy of compressor model in system conditions was improved.

  • PDF

Calibration System for Angular Vibration Using Precision Rotary Encoder (고정밀 회전엔코더를 이용한 회전진동 교정시스템)

  • Nam, Seunghwan;Baik, Kyungmin;Cheung, Wan-Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • In this paper, two calibration methods for angular vibration pickups using a precision rotary encoder are proposed. The KRISS (Korea Research Institute of Standards and Science) primary angular vibration calibration system and the calibration procedures are briefly explained. The rotary encoder is shown to be calibrated in two methods: The one is to use the laser interferometer to calibrate the rotary encoder under test and the other is to exploit the certificate of the encoder supplied. Complex sensitivities measured from the first are shown to be less than 0.1 % difference in magnitude and $0.01^{\circ}$ difference in phase shift in reference to those of the primary calibration system. Their expanded uncertainties were observed to be less than 0.6 % in magnitude and $0.4^{\circ}$ in phase shift over the range of 0.4 to 200 Hz. Under the same calibration conditions, complex sensitivities evaluated by the second method are shown be 0.1 % difference in magnitude and $0.6^{\circ}$ difference in phase shift in reference to those of the primary calibration system. Their expanded uncertainties were seen to be less than 4.8 % in magnitude and $2.8^{\circ}$ in phase shift.

Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System (회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • In this paper, we propose an optimized fuzzy controller based on Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) for rotary inverted pendulum system. We adopt fuzzy controller to control the rotary inverted pendulum and the fuzzy rules of the fuzzy controller are designed based on the design methodology of Linear Quadratic Regulator (LQR) controller. Simple Genetic Algorithms (SGAs) is well known as optimization algorithms supporting search of a global character. There is a long list of successful usages of GAs reported in different application domains. It should be stressed, however, that GAs could still get trapped in a sub-optimal regions of the search space due to premature convergence. Accordingly the parallel genetic algorithm was developed to eliminate an effect of premature convergence. In particular, as one of diverse types of the PGA, HFCGA has emerged as an effective optimization mechanism for dealing with very large search space. We use HFCGA to optimize the parameter of the fuzzy controller. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy controller leads to superb performance in comparison with the conventional LQR controller as well as SGAs based fuzzy controller.

Design and Development of a Novel High Resolution Absolute Rotary Encoder System Based on Affine n-digit N-ary Gray Code

  • Paul, Sarbajit;Chang, Junghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.943-952
    • /
    • 2018
  • This paper presents a new type of absolute rotary encoder system based on the affine n-digit N-ary gray code. A brief comparison of the existing encoder systems is carried out in terms of resolution, encoding and decoding principles and number of sensor heads needed. Using the proposed method, two different types of encoder disks are designed, namely, color-coded disk and grayscale coded disk. The designed coded disk pattern is used to manufacture 3 digit 3 ary and 2 digit 5 ary grayscale coded disks respectively. The manufactured disk is used with the light emitter and photodetector assembly to design the entire encode system. Experimental analysis is done on the designed prototype with LabVIEW platform for data acquisition. A comparison of the designed system is done with the traditional binary gray code encoder system in terms of resolution, disk diameter, number of tracks and data acquisition system. The resolution of the manufactured system is 3 times higher than the conventional system. Also, for a 5 digit 5 ary coded encoder system, a resolution approximately 100 times better than the conventional binary system can be achieved. In general, the proposed encoder system gives $(N/2)^n$ times better resolution compared with the traditional gray coded disk. The miniaturization in diameter of the coded disk can be achieved compared to the conventional binary systems.

A Comparison of the Effectiveness of Stainless-Steel Hand Instrument and Rotary NiTi Retreatment Instrument to Remove Gutta-Percha in Curved Root Canals (만곡된 근관에서 Gutta-Percha 제거 시 스테인리스스틸 수기구와 회전식 NiTi 재치료용 기구의 효과 비교)

  • Nam, Dong-Goo;Kim, Min-Jeong;Cho, Hye-Jin;Lee, Kwang-Won;Yu, Mi-Kyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.99-107
    • /
    • 2011
  • The main objective of nonsurgical retreatment is to disinfect the root canal space for periradicular healing. Thus, efficient removal of the filling material from the root canal system is essential to ensure a favorable outcome. Traditionally, the removal of root canal filling material was performed by stainless steel hand instrument and this procedure is time and effort-consuming. Recently, rotary NiTi retreatment instruments are developed to effective removal of root canal filling material. The aim of this study was to evaluate the effectiveness of stainless-steel hand instrument and rotary NiTi retreatment instrument when removing gutta-percha in curved root canals. For the remaining materials, there were no significant differences between groups. But the rotary NiTi system proved to be faster than hand instruments in removing root filling materials.

Design of Precision Motor Dynamometer System using MR Fluid (MR Fluid를 이용한 정밀 모터 동력계 실험 장치 설계)

  • Kim J.K.;Roh C.Y.;Roh M.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.313-317
    • /
    • 2005
  • Precision motor dynamometer is requiring for nano positioning control performance recently. Particularly, linear motor is using rapidly and the dynamometer needs is increasing. In this study, a precision control dynamometer is designed using MR (Magnetic Rheological) damper. The ultra precision motor system including the driver and controller is tested using the MR damper dynamometer. This dynamometer is able to measure torque for rotary motor or traction force with linear positioning accuracy for linear motor system.

  • PDF