• Title/Summary/Keyword: Rotary motion

Search Result 261, Processing Time 0.029 seconds

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

  • Li, Jun;Jiang, Li;Li, Xiaobin
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The coupled equations of motion of the composite beams are derived with help of the Hamilton's principle. The effects of the shear deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present results with the available solutions in literature.

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on the Materials of the Stator (스테이터의 재질에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.891-895
    • /
    • 2005
  • Novel structure ultrasonic motors which have cross type stator were designed and fabricated. Driving characteristics of the motors were analyzed and measured by changing the materials of the stator. This ultrasonic motor has stator with hollowed cross bar and the stator rotate the rotor using elliptical displacement of the inside tips. This motion is generated by lateral vibration mode of cross bars. This stator was analyzed by finite element analysis depandent on stator's materials. And the cross type ultrasonic motors were made by analyzed results. The larger displacements were obtained, when the density of material was decreased. But the stress was increased when the stator's material has large density and Young's modulus. The fabricated one has high speed and torque in large stress on contact point between rotor and stator. The stress was more effected on speed and torque than the displacement.

A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner (로터리 버너의 축류형 팬 주위 유동특성 연구)

  • Ko, D.G.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

Design and Analysis of a L shape two touch point ultrasonic rotary motor (L형 2타점 회전모터의 설계와 해석)

  • Kim, Sung-Hyun;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.85-88
    • /
    • 2004
  • The piezoelectric ceramic is attached between 'L' type guide and 'L' type stator, This motor has rotary motion which is operated by longitudinal and bending mode. The basic structure of the two kinds of type motor that called one stator motor, two stator motor is same but we suggested a few parameters for considering their stator design and characteristics. As a result, the two stator type motor is much more useful than one stator type motor for hi-direction rotation.

  • PDF

Development of a Linear Motor Dynamometer for Positioning Control Performance Test (Linear모터의 위치 제어 성능 시험을 위한 Dynamometer 개발)

  • Roh Chang-Yul;Rho Myung-Hwan;Kim Ju-Kyung;Park Jong-Jin;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.609-614
    • /
    • 2006
  • Recently linear motor has been used mainly for high speed feeding performance of machine tools. The advantages of linear motor are not only high speed but high accuracy, because it is not required the coupling and ballscrew for converting rotary to liner motion. Before applying in different moving system, the dynamometer is necessary to test the performance. In Korea, the linear motor is producing in a couple of company However, the liner motor dynamometer is not commercialized yet, like as rotary motor dynamometer. In this paper, a linear motor dynamometer is designed and manufactured using a MR damper. The dynamometer system developed in this study could be used for testing the positioning accuracy fur different loading conditions, traction forces, dynamic performance and so on.

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF

A Study on the Improvement of Circularity Measurement Using Circular Test Method (CT법을 이용한 진원도 측정 방법의 개선에 관한 연구)

  • 주만식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.446-451
    • /
    • 1999
  • A study for the roundness of machining center is classified into two ways. one is the way that progresses the roundness amending the parameter of machining center based on the measured value after the measurement of the roundness of machining center by means of a existing measuring device, another is the way that measures the roundness by remodeling the existing measuring device. The former is studied by pack hei jae team in Seoul university, the latter is studied by TSUTSUMI. Especially TSUTSUMI measures the roundness according to circular compensation after the insertion of developed measuring desire using a rotary encoder to the spindle of machining tool. We study how regulation velocity occuring with circular motion of machining center table influences the roundness after measuring the roundness using Circular Test method by a 2 dimention probe and a standard discus in this experiment.

  • PDF

A Study on the Measurement of Circularity and Perpendicularity Using Circular Test Method (CT법을 이용한 진원도 및 직각도 측정에 관한 연구)

  • 주만식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.75-81
    • /
    • 2000
  • This study for the roundness and perpendicularity of machining center is classified into two ways. One is the way that progresses the roundness amending the parameter of machining center based on the measured value after the measurement of the roundness of machaning center by means of a existing measuring device, another is the way that measures the roundness by remodeling the existing measuring device. the former is studied by pack hei jae team in Seoul university, the later is studied by TSUTSUMI. Especially TSUTSUMI measures the roundness according to circular compensation after the insertion of developed measuring device using a rotary encoder to the spindle of machining tool. we study how regulation velocity occuring with circular motion of machining center table influences the roundness after measuring the roundness using Circular Test method by a 2 dimention probe and a standard discus in this experiment.

  • PDF