• 제목/요약/키워드: Rotary Motion

검색결과 261건 처리시간 0.029초

기계장비 정밀도 시뮬레이션 기술 개발 (Development of an Accuracy Simulation Technology for Mechanical Machines)

  • 박천홍;황주호;이찬홍;송창규
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

소형 회전식 압축기의 동수압적 윤활해석 (Hydrodynamic Lubrication Analysis of a Small Rotary Compressor)

  • 송기선;장시열;한동철
    • Tribology and Lubricants
    • /
    • 제4권1호
    • /
    • pp.74-80
    • /
    • 1988
  • For an analytic investigation on the dynamic behaviour of the eccentric piston and roller in the cylinder of small rotary vane compressors the hydrodynamic lubrication theory is opplied, analogous to the dynamic analysis of a engine bearing. An adequate modification of the equation of journal motion permits stable convergencies of the numeric calculation of the journal orbits. The increase of the outer diameter of the roller and the eccentricity of the piston gives a relative large decrease of the minimum gap between the roller and cylinder.

Cyclic fatigue test on different rotary NiTi files and handling methods

  • Kim, Jae-Kwan;Kim, Eui-Seong
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.599-599
    • /
    • 2003
  • Endodontic rotary NiTi(Nickel-Titanium) files have several advantages, but they also have some problems. Fracture of instrument is the one of the problems. Cyclic fatigue fracture may not give a previous sign(ex, bending or distortion of the files) before it happen. It is affected by various factors. This study investigated time which takes for cyclic fatigue fracture to happen and fracture patterns with regard to different NiTi files and pecking motion.(omitted)

  • PDF

확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발 (Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace)

  • 정성훈;김기성;곽경민;김한성
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

자속종방향 HB형 선형 스텝핑 전동기의 시작기 제작 및 특성해석 (Manufacturing Prototype and Characteristics Analysis of HB Type Linear Stepping Motor with Longitudinal Flux Machine)

  • 원규식;김동희;이상호;오홍석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권10호
    • /
    • pp.507-513
    • /
    • 2003
  • Nowadays, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In the recently, the position control motor have disadvantaged in the efficiency and economical view since it require a conversion equipments such as belt and gear in order to convert rotary to linear motion. On the contrary, the hybrid linear stepping motor(HLSM) of linear motion digital actuator has a direct drive method that do not need mechanical conversion equipments. Therefore, the HLSM is better advantaged in the efficiency and economical view than a rotary stepping motor. In this paper, we have designed an optimum tooth shape and a permanent magnet value between the mover teeth by the 2D finite element method(FEM) to develop the HLSM with longitudinal flux machine(LFM) type, and calculated the thrust force and normal force. And we have manufactured the prototype of it. and have experimented the thrust force and the dynamic thrust characteristics of it.

동작시간분석에 의한 작업개선연구 -PCB조립작업을 사례로- (A Work Improvement Study by Motion-Time Analysis)

  • 박성학
    • 기술사
    • /
    • 제16권3호
    • /
    • pp.33-40
    • /
    • 1983
  • This paper is one of the case studies to improve the labor productivity of PCB assembly through Work Factor motion-time analysis and the application of the motion economy principles and the human factors engineering theory. In result, we can improve 129% of the labor productivity by using a rotary table for the parts delivery. Therefore, it is expected that this result can be used for a lot of the manual works of the small and medium-sized industries especially.

  • PDF

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

자유곡면가공기용 초정밀 회전테이블의 설계 및 평가 (Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools)

  • 황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.