• Title/Summary/Keyword: Rotary Brake

Search Result 19, Processing Time 0.034 seconds

MR rotary brake development with permanent magnet (자기 유변 유체와 영구 자석을 이용한 회전 엑츄에이터의 개발)

  • 권순우;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.183-186
    • /
    • 1997
  • This paper presents the new MR rotary brake with a permanent magnet, based on the shear operating mode. Due to the permanent magnet, the MR rotary brake can give the nominal resistance to the external disturbance and give the fail safe capacity to the system even when the power supply is accidentally cut off. As we apply the positive or negative current to the electric magnet coil, the resistance torque of the MR rotary brake can be reduced to the value less than the nominal resistance or increased up to the magnetic saturation point.

  • PDF

A new configuration in a prosthetic knee using of hybrid concept of an MR brake with a T-shaped drum incorporating an arc form surface

  • Sayyaadi, Hassan;Zareh, Seiyed Hamid
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.275-296
    • /
    • 2016
  • This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Prosthetic knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via T-shaped drum with arc surface boundary and implementing of Newton's equation of motion to derive generated torque at the inner surface of the rotary drum. For this purpose a novel configuration of a T-shaped drum based on the effects of a material deformation process is proposed. In this new design, the T-shaped disc will increase the effective areas of influences in between drum and MR fluid together and the arc wall crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. To verify the proposed MR brake, results of the proposed and conventional MR brakes are compared together and demonstrated that the resisting torque of the proposed MR brake is almost two times greater than that of the conventional brake.

Development of a Health Bicycle for Improving the Muscle Strength of Lower Limb using MR Rotary Brake (MR 회전형 브레이크를 이용한 하지 근력 증진용 헬스 자전거 개발)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.832-839
    • /
    • 2007
  • In this study, a new bicycle system was developed to improve muscular strength using the Magneto-Rheological(MR) rotary brake. The friction load of the MR rotary brake is adjusted according to muscle strength of the subjects. The characteristic of muscular strength was studied with various friction loads of MR rotary brake. The friction load was occurred with the current, applied to the MR. rotary brake. Experiments was composed of several cycling trials for various friction loads. In training programs involving muscle improvement, it is necessary to confirm muscle activity and fatigue. To measure the muscle activity and fatigue, EMG signals of rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastus lateralis (VL), vastus medialis (VAS), gastrocnemius (GAS), tibialis anterior (TA) and soleus (SOL) muscles were collected with surface electromyography and analyzed into time and frequency domain. The experimental results showed that the muscle activity according to the applied current to the MR rotary brake was significantly different. The more the current was applied, the higher value of the integrated EMG (IEMG) was obtained. Especially, the magnitude of IEMG of the RF, BF, TFL and VL varied in direct proportion to the current. However, there was not significant in the median frequency as the cycling time continue.

Analysis of a Novel MR Rotary Brake with Permanent Magnet (영구자석을 이용한 새로운 MR 브레이크의 해석)

  • Yun, Dong-Won;Park, Jung-Ho;Son, Young-Su;Park, Hee-Chang;Park, Cheol-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.34-41
    • /
    • 2009
  • In this paper, a novel MR brake with permanent magnet is developed. This system consists of rotary disk, permanent magnet, spring and MR fluid. Permanent magnets are attached to the rotary disk and moves in the direction of radius. The magnets are linked to rotor axis by spring. As rotation speed increases, the magnets move outward from the center of the system by centrifugal force in the MR fluid. A proper design of stator or case makes the system have unique torque characteristics. The research is performed like following procedures. First, the electromagnetic characteristic of the system is analyzed using Maxwell. Next, torque is calculated using the results of the electromagnetic analysis. Finally, the performance of various types of the brake systems are investigated and compared with each other.

Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation (회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake (MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상)

  • Ahn K.K.;Song J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF

Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake (MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

Design of MR rotary brake with permanent magnet (영구자석을 이용한 회전형 MR 브레이크의 설계)

  • Youn, Dong-Won;Park, Jung-Ho;Ham, Young-Bog
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1416-1421
    • /
    • 2007
  • In this paper, a novel MR brake with permanent magnet is developed. This system consists of rotary disk, permanent magnet, spring and MR fluid. Permanent magnets are attached to the rotary disk and moves in the direction of radius. The magnets are linked to rotor axis by spring. As rotation speed increases, the magnets move outward from the center of the system by centrifugal force in the MR fluid. A proper design of stator or case makes the system have unique torque characteristics. To show the performance of the system, the research is performed by following procedure. First, the electromagnetic characteristic of the system is analyzed using FEM and commercial code, Maxwell is used for this analysis. Then, torque is calculated using the result of the electromagnetic analysis to validate the performance of the system.

  • PDF