• Title/Summary/Keyword: Rosin-Rammler

Search Result 27, Processing Time 0.034 seconds

A Study of Effect of Droplet Distribution Functions in Modeling of Pressure-Swirl Atomizer (압력 선회 분사기 분무모델에서 액적분포함수 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.117-120
    • /
    • 2007
  • This study investigated the spray modeling of the pressure-swirl atomizer installed in liquid rocket engine and the effect of drop distribution function especially. The $X^2$, originally implemented to KIVA, Rosin-Rammler and modified Rosin-Rammler distribution functions were investigated theoretically and compared to each other. Also, they were applied to pressure-swirl atomizer similar to the injector installed in liquid rocket engine to evaluate the feasibility for LRE injector. Among the distribution functions, original Rosin-Rammler distribution function was the most compatible with predicting the spray characteristics of pressure-swirl atomizer installed in liquid rocket engine.

  • PDF

Analysis of Production Process of Fine Size Fraction of Korean Kaolin by Ball Mill Grinding II (Ball Mill 분쇄에 의한 고령토의 미분성분 생성과정의 해석(II))

  • 서태수;심철호;김상필
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • The validity of Alyavdin-Chujyo's Equation was re-examined over the broader milling conditions that those previously examined. Ordinary ball mill grinding with a laboratory scale batch mill (133mmø×144mm length) were selected as the grinding methods. The results show that in ball milling the Alyavdin-Chunjyo's Equation can be applicable over wide grinding time and size range with few exceptions. The validity of which are examined and discussed. The theoretical consideration of the relation between Alyavdin-Chujyo's Equation and size distributiion equation, such as Rosin-Rammler's law, was tried, and it is found that, under the condition of alyardin-Chujyo's relation, the Rosin-Rammler size distribution law can hold.

  • PDF

Analysis of Production Process of Fine Size Fraction of Korean Kaolin by Ball Mill Grinding I (Ball Mill 분쇄에 의한 고령토의 미분성분 생성과정의 해석 I)

  • 심철호;김상필;서태수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.35-40
    • /
    • 1986
  • The production process of a fine size fraction of Korean kaolin by ball milling is studied in this paper by analyzing the size distribution the size distribution of products with the Rosin-rammle formular and the rate process of cumulative size fractions with Alyavdin-Chujyo's formular. The size distribution is found to be divided in three regions a coarser part influenced by feed size an intermediate part where the size distribution shows a clear straight line relationship on Rosin-Rammler chart and the finest part with the ultimate limit of fineness by ball milling. Alyavdin-Chujyo's relationship is found to be valid over a very wide range of milling conditions. For different feed sizes the Alyavdin-Chujyo's relationship gives a group of straight lines with a common intersection point which can be defined as the limiting point of the persistent component region.

  • PDF

Evaluation of the Fluidity of Fly Ash Cement Paste (플라이 애시 혼합 시멘트 페이스트의 유동성 평가)

  • 이승헌;김홍주;판정열;대문정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1221-1226
    • /
    • 2000
  • Influence of characters of fly ash on the fluidity of cement paste with polycarboxylic acid type superplasticizer has been investigated in connection with the particle size of distribution, unburned carbon content, specific surface area and shape of fly ash. The fluidity of paste is increased with increasing roundness of fly ash and it is decreased with increasing n-value of Rosin-Rammler distribution function. There is a linear correlation between roundness/n-value and fluidity of fly ash cement paste.

Numerical Simulations on Combustion Considering Propellant Droplet Atomization and Evaporation of 500 N Class Hydrogen Peroxide / Kerosene Rocket Engine (500 N급 과산화수소/케로신 로켓엔진의 추진제 액적 분무와 증발을 고려한 연소 수치해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, In-Sang;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.862-871
    • /
    • 2012
  • The numerical simulations on 500-N class rocket engine using 96% hydrogen peroxide and kerosene have been conducted, considering atomization, evaporation, mixing and combustion of its propellants. The grid containing 1/6 part of combustion chamber has been generated and it is assumed that 3 kinds of liquid-phase propellants (kerosene, hydrogen peroxide and water) were injected as hollow cone spray pattern, using Rosin-Rammler function for distribution of droplet diameter. For the calculation of combustion the eddy-dissipation model was applied. Owing to small size of combustion chamber and large specific heat / latent heat of hydrogen peroxide and water the propulsion characteristics were highly influenced by the size of droplet particles, and in this analysis the engine with droplet particles of 30 micron in average has shown the best propulsion performance.

Effect of Particle Size Distribution of Binder on the Rheological Properties of Slag Cement Pastes (결합재의 입도분포가 슬래그 시멘트 페이스트의 유동 특성에 미치는 영향)

  • Hwang, Hae-Jeong;Lee, Seung-Heun;Lee, Won-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.6-11
    • /
    • 2007
  • The rheological properties of slag cement pastes by effect of particle size distribution of binder were investigated using a Rheostress 1 rheometer (Haake) with a cylindrical spindle and the relationship between fluidity particle size distribution using the Rosin-Rammler equation. Samples are combined the two types of slag powder and OPC, fine slag particles sized Elaine specific surface area $8,000cm^2/g$, coarse slag particles sized Elaine specific surface area $2,000cm^2/g$, intermediate OPC particles $3,450cm^2/g$, used to search for the combination that would yield the best quality product. The all flow curves which were measured by rheometer showed hysterisis and could be classified into 4 types. When the combination was based on a ratio of 15-20 vol% fine particles, 40-50 vol% intermediate particles, 30-40 vol% coarse particles of the total volume, a high fluidity and low yield-strength was achieved. The Rosin-Rammler function can explain aboved correlation flow curve types. On type 1, the n-value had a correlation with plastic viscosity however the blend of type 2 and 3 showed consistent n-value regardless of plastic viscosity. In addition, the blend in type 4 tended to a rise in fluidity according to the increase of the n-value.

Spray Characteristics on Impingement Angle Variation and Mixture ratio of Impinging Injectors (충돌각과 혼합비 변화에 따른 충돌형 분사기의 분무특성에 관한 연구)

  • Gang, Sin Jae;Song, Beom Geun;Song, Gi Jeong;Lee, Jeong Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Spray characteristics were investigated by impinging F-O-O-F type injector with varying the impingement angle through 15, 20 and 30 degree and the mixture ratio(O/F ratio) from 1.5 to 3.0. Experimental results show that the correlation between dispersion and impingement angle is not influenced of the mixture ratio variation, but which has influence on number density, and there is a linear correlation between dispersion and impingement angle. Velocity distribution, standard deviation and SMD of droplets are decreased as the impingement angle increases. Also, it was confirmed that the distribution of droplet size are in accordance with Rosin-Rammler and Upper-limit distribution.

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

Prediction of Pressure Drop in Venturi Scrubber Using the Eulerian - Lagrangian Method (오일러-라그랑지 방법을 이용한 벤튜리 스크라버의 압력강하 계산)

  • Pak S, I.;Moon Y. W.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.190-195
    • /
    • 2004
  • The pressure drop in a Venturi Scrubber is predicted using the Eulerian-Lagrangian Method, which is one of the numerical methods to solve the dispersed two-phase flow. KIVA-3V Code is modified to solve the coupled gas-liquid two-phase flow field. The liquid is assumed to be injected through the nozzles with the Rosin-Rammler drop size distribution. The computational results shows good agreement with the experimental data.

  • PDF

Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor (가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구)

  • Cho, S.P.;Kim, H.Y.;Park, S.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF