DOI QR코드

DOI QR Code

Numerical Simulations on Combustion Considering Propellant Droplet Atomization and Evaporation of 500 N Class Hydrogen Peroxide / Kerosene Rocket Engine

500 N급 과산화수소/케로신 로켓엔진의 추진제 액적 분무와 증발을 고려한 연소 수치해석

  • 하성업 (한국항공우주연구원 미래로켓연구팀) ;
  • 이선미 (한국항공우주연구원 미래로켓연구팀) ;
  • 문인상 (한국항공우주연구원 미래로켓연구팀) ;
  • 이수용 (한국항공우주연구원 미래로켓연구팀)
  • Received : 2011.12.12
  • Accepted : 2012.10.02
  • Published : 2012.10.01

Abstract

The numerical simulations on 500-N class rocket engine using 96% hydrogen peroxide and kerosene have been conducted, considering atomization, evaporation, mixing and combustion of its propellants. The grid containing 1/6 part of combustion chamber has been generated and it is assumed that 3 kinds of liquid-phase propellants (kerosene, hydrogen peroxide and water) were injected as hollow cone spray pattern, using Rosin-Rammler function for distribution of droplet diameter. For the calculation of combustion the eddy-dissipation model was applied. Owing to small size of combustion chamber and large specific heat / latent heat of hydrogen peroxide and water the propulsion characteristics were highly influenced by the size of droplet particles, and in this analysis the engine with droplet particles of 30 micron in average has shown the best propulsion performance.

96% 과산화수소와 케로신을 추진제로 사용하는 500 N 급 로켓엔진에 대하여 추진제의 분무, 기화, 혼합, 연소를 포함하는 수치해석을 수행하였다. 1/6 조각의 연소실을 격자로 생성하였으며, 세 가지 종류의 액체상 추진제(케로신, 과산화수소, 물)가 속이 빈 콘 형태로 공급되는 분무를 모사하였고, Rosin-Rammler 함수에 따른 액적크기 분포를 가정하였으며, 연소 해석에는 와류소산모델을 사용하였다. 본 계산에서는 작은 연소실 크기, 그리고 과산화수소 및 물의 큰 잠열 및 비열로 인하여 평균 액적 크기 변화에 따라 큰 성능의 차이를 나타냈으며, 평균 액적 크기가 30 micron인 경우 가장 좋은 추진성능을 보여주었다.

Keywords

References

  1. 하성업, 권민찬, 서견수, 한상엽, "발사체 추진제로서 과산화수소의 과거와 미래전망," 한국항공우주학회지 제 37권 제 7호, 2009
  2. M. C. Ventura and P. Mullens, "The Use of Hydrogen Peroxide for Propulsion and Power", AIAA-99-2880, 1999
  3. Shinichiro Tokudome, Tsuyoshi Yagishita, Hiroto Habu, Toru Shimada, "Experimental Study of an N2O/Ethanol Propulsion System," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 8-11, July, 2007
  4. S. A. Morsi, A. J. Alexander, "An Investigation of Particle Trajectories in Two-Phase Flow Systems," AIAA Journal of Fluid Mechanics, 1972
  5. 이후경, 최상민, 김봉근, "범용 CFD 코드에 서 석탄 가스화 및 연소 모델링에 관한 이해," 한국연소학회지, Vol.15, No. 3, 2010
  6. Hideyo Negishi, Akinaga Kumakawa, Nobuhiro Yamanishi, Akihide Kurosu, "Heat Transfer Simulations in Liquid Rocket Engine Subscale Thrust Chambers," 44th AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008
  7. P. Dagaut, "On the Kinetics of Hydrocarbons Oxidation from Natural Gas to Kerosene and Diesel Fuel," Phys. Chem. Chem. Phys, Vol. 4, 2002
  8. 최정열, 신재렬, "케로신-산소 동축분사 난류연소 해석을 위한 다단 준총괄 화학반응기구," 한국항공우주학회 추계학술대회, 2011
  9. A. Minotti, C. Bruno, F. Cozzi, "Numerical Simulations of a Micro Combustion Chamber," 47th AIAA Aerospace Science Meeting, Orlando, Florida, 2009
  10. Rajendran Mohanraj, Balu Sekar, Joseph Zelina, "Simulation of Swirl Stabilized, Liquid Fueled Model Gas Turbine combustion Systems," 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008
  11. Maria Grazia De Giorgi, Alessio Leuzzi, "CFD Simulation of Mixing and Combustion in LOx/CH4 Spray under Supercritical Conditions," 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, 2009
  12. U. Schmidt, C. Rexroth, R. Scharler, I. Cremer, "New Trends in Combustion Simulation," Ercoftac Workshop, 2005
  13. Fluent User's Guide, ANSYS Fluent 13.0
  14. Fluent Theory Guide, ANSYS Fluent 13.0
  15. A. H. Lefebvre, "Atomization and Sprays," CRC Press, 1988
  16. S. A. Morsi, A. J. Alexander, "An Investigation of Particle Trajectories in Two-Phase Flow Systems," AIAA Journal of Fluid Mechanics, 1972
  17. B. F. Magnussen, B. H. Hjertager, "On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion," International Symposium on Combustion, 1976