• Title/Summary/Keyword: Root motion

Search Result 152, Processing Time 0.023 seconds

Effectiveness of endodontic retreatment using WaveOne Primary files in reciprocating and rotary motions

  • Patricia Marton Costa;Renata Maira de Souza Leal;Guilherme Hiroshi Yamanari;Bruno Cavalini Cavenago;Marco Antonio Hungaro Duarte
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2023
  • Objectives: This study evaluated the efficiency of WaveOne Primary files (Dentsply Sirona) for removing root canal fillings with 2 types of movement: reciprocating (RCP) and continuous counterclockwise rotation (CCR). Materials and Methods: Twenty mandibular incisors were prepared with a RCP instrument (25.08) and filled using the Tagger hybrid obturation technique. The teeth were retreated with a WaveOne Primary file and randomly allocated to 2 experimental retreatment groups (n = 10) according to movement type: RCP and CCR. The root canals were emptied of filling material in the first 3 steps of insertion, until reaching the working length. The timing of retreatment and procedure errors were recorded for all samples. The specimens were scanned before and after the retreatment procedure with micro-computed tomography to calculate the percentage and volume (mm3) of the residual filling material. The results were statistically evaluated using paired and independent t-tests, with a significance level set at 5%. Results: No significant difference was found in the timing of filling removal between the groups, with a mean of 322 seconds (RCP) and 327 seconds (CCR) (p < 0.05). There were 6 instrument fractures: 1 in a RCP motion file and 5 in continuous rotation files. The volumes of residual filling material were similar (9.94% for RCP and 15.94% for CCR; p > 0.05). Conclusions: The WaveOne Primary files used in retreatment performed similarly in both RCP and CCR movements. Neither movement type completely removed the obturation material, but the RCP movement provided greater safety.

Effect of Vibratory Stimulation on Recovery of Muscle function from Delayed Onset Muscle Soreness

  • Koh, Hyung-Woo;Kim, Cheol-Yong;Kim, Gye-Yoep;Kim, Kyung-Yoon;Kim, Soo-Geun;Lee, Hong-Gyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • This study was designed to investigate the effect of vibratory stimulation on recovery of muscle function from delayed onset muscle soreness (DOMS). Volunteers performed 3 set of 70 % maximal voluntary eccentric muscle contraction and induced DOMS. volunteers were allocated to one of three treatment group after DOMS : group I (control), group II (ultrasound), group III (vibration). Maximal Voluntary Isometric Contraction (MVIC), Visual Analog Scale (VAS), Range Of Motion (ROM), Root Mean Square (RMS), Median frequency (MDF), Blood Serum Creatine Kinase (CK), Lactic dehydrogenase (LDH) were recorded at baseline, and 24, 48, 72 hours post-exercise. In MVIC measurement, there was a statistically significant difference in group III compared to group I (p < .05). In VAS measurements, there were a statistically significant difference in group II and III compared to group I (p < .05). In ROM measurement, there was a statistically difference in group II and III compared to group I (p < .05). In Muscle Volume with Ultrasonography measurement, there was no statistically significant difference in any groups (p > .05). In RMS and MDF measurement, there were a statistically significant difference in group II and III compared to group I (p < .05). In Blood samples of CK and LDH measurements, There were no statistically significant difference in any groups (p > .05). From the above result, Vibratory stimulation had a positive effect on recovery of muscle function from delayed onset muscle soreness. Further studies should be undertaken to ascertain the more effectiveness of vibratory stimulation and may be a promising treatment modality.

Comparison of vibration characteristics of file systems for root canal shaping according to file length

  • Seong-Jun Park;Se-Hee Park ;Kyung-Mo Cho ;Hyo-Jin Ji ;Eun-Hye Lee ;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.51.1-51.10
    • /
    • 2020
  • Objectives: No studies have yet assessed vibration characteristics according to endodontic file length. Accordingly, the objective of the present study was to examine the vibration characteristics according to nickel-titanium file length and to compare these characteristics between different file systems. Materials and Methods: A total of 45 root canal models were divided into 3 experimental groups (n = 15 each) based on the file system used (ProTaper Gold [PTG], ProTaper Next, or WaveOne Gold [WOG]). Each experimental group was further divided into 3 subgroups according to file length (21, 25, or 31 mm). An electric motor (X-SMART PLUS) was used in the experiment. For each file system, vibrations generated when using a size 25 file were measured and used to calculate the average vibration acceleration. The differences in vibrations were analyzed using 1-way analysis of variance and the Scheffé post hoc test with a confidence interval of 95%. Results: In the PTG file system, significantly lower vibration acceleration was observed when using a 21-mm file than when using a 31-mm file. In the WOG file system, significantly stronger vibration acceleration was observed when using a 31-mm file than when using 21- or 25-mm files. Regardless of the file length, the WOG group exhibited significantly stronger vibration acceleration than the other 2 experimental groups. Conclusions: In clinical practice, choosing a file with the shortest length possible could help reduce vibrations. Additionally, consideration should be given to vibrations that could be generated when using WOG files with reciprocating motion.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Development of Joint Angle Measurement System for the Feedback Control in FES Locomotion (FES보행중의 피드백제어를 위한 관절 각도계측 시스템 개발)

  • Moon, Ki-Wook;Kim, Chul-Seung;Kim, Ji-Won;Lee, Jea-Ho;Kwon, Yu-Ri;Kang, Dong-Won;Khang, Gon;Kim, Yo-Han;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.203-209
    • /
    • 2009
  • The purpose of this study is to develop a minimally constraint joint angle measurement system for the feedback control of FES (functional electrical stimulation) locomotion. Feedback control is desirable for the efficient FES locomotion, however, the simple on-off control schemes are mainly used in clinic because the currently available angle measurement systems are heavily constraint or cosmetically poor. We designed a new angle measurement system consisting of a magnet and magnetic sensors located below and above the ankle joint, respectively, in the rear side of ipsilateral leg. Two magnetic sensors are arranged so that the sensing axes are perpendicular each other. Multiple positions of sensors attachment on the shank part of the ankle joint model and also human ankle joint were selected and the accuracy of the measured angle at each position was investigated. The reference ankle joint angle was measured by potentiometer and motion capture system. The ankle joint angle was determined from the fitting curve of the reference angle and magnetic flux density relationship. The errors of the measured angle were calculated at each sensor position for the ankle range of motion (ROM) $-20{\sim}15$ degrees (dorsiflexion as positive) which covers the ankle ROM of both stroke patients and normal subjects during locomotion. The error was the smallest with the sensor at the position 1 which was the nearest position to the ankle joint. In case of human experiment, the RMS (root mean square) errors were $0.51{\pm}1.78(0.31{\sim}0.64)$ degrees and the maximum errors were $1.19{\pm}0.46(0.68{\sim}1.58)$ degrees. The proposed system is less constraint and cosmetically better than the existing angle measurement system because the wires are not needed.

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

Shaping characteristics of two different motions nickel titanium file: a preliminary comparative study of surface profile and dentin chip (두 가지 다른 행정의 니켈 티타늄 파일의 성형 성상: 표면 성상, 상아질 삭편과 도말층에 대한 예비적 비교 연구)

  • Park, So-Ra;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Purpose: To assess the surface profile of dentinal wall, dentin chips and smear layer during the canal shaping with rotary (ProTaper) and ProFile and reciprocating (WaveOne) nickel-titanium file. Materials and Methods: Sixty human extracted mandibular premolars and incisors with single canals were randomly selected. Three experimental groups (n = 20) were instrumented with ProTaper (F2), ProFile (25/.06), WaveOne (25/.08) with irrigation of 2.5% NaOCl. The dentin chips were collected from flute of file during each canal preparation. After canal preparation, roots were grinded and each group was divided into two subgroups (n = 10) for surface profile and smear layer of dentinal wall of shaped root canal. Each specimen was observed under scanning electron microscope for evaluating size of dentin chips, root canal surface recessions and smear layer. Scores of Smear layer were statistically analyzed using Kruskal Wallis test and Mann Whitney test at P = 0.05 level. Results: The size of dentin chips from ProFile, ProTaper and WaveOne was up to $7{\mu}m$, $6.5{\mu}m$, and$4{\mu}m$, respectively. In the surface profile, the width of surface irregularity was measured and Profile, ProTaper and WaveOne was up to $150{\mu}m$, $70{\mu}m$, and $80{\mu}m$, respectively. Completely cleaned root canals were not found. In the middle and apical third of the canals, WaveOne group showed higher smear layer score than ProFile and ProTaper groups (P < 0.05). Conclusion: Within limits of this study, reciprocating motion WaveOne group was not significant difference of shaping ability with the full-sequence ProFile and ProTaper systems except canal clearness of middle and apical third of root canal. When using WaveOne to shaping root canal, thorough root canal irrigation is recommended.

Pattern Classification Algorithm for Wrist Movements based on EMG (근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구)

  • Cui, H.D.;Kim, Y.H.;Shim, H.M.;Yoon, K.S.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • In this paper, we propose the pattern classification algorithm of recognizing wrist movements based on electromyogram(EMG) to raise the recognition rate. We consider 30 characteristics of EMG signals wirh the root mean square(RMS) and the difference absolute standard deviation value(DASDV) for the extraction of precise features from EMG signals. To get the groups of each wrist movement, we estimated 2-dimension features. On this basis, we divide each group into two parts with mean to compare and promote the recognition rate of pattern classification effectively. For the motion classification based on EMG, the k-nearest neighbor(k-NN) is used. In this paper, the recognition rate is 92.59% and 0.84% higher than the study before.

  • PDF

A Study on Comparison of Combination Rules for the Seismic Analysis on Curved Bridges with the Different Radiuses of Curvature (곡선교의 내진 해석 시 곡률에 따른 하중 조합 방법의 비교에 관한 연구)

  • Ryu, Dong-Hyeon;Shin, Myoung-Gyu;Park, Jin-Wan;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.567-572
    • /
    • 2008
  • This paper's purpose is to improve determining of the critical response of curved bridge to multi-component seismic motion. There are several methods to combine responses by multi-component excitation response, 30%, 40% rules and square-root-of-sum (SRSS). These combination rules determine same value of critical response in straight bridges. However, each method has critical response value of different magnitude in curved bridges. Thus a study about critical response of curved bridges is required. This paper presents comparison critical responses value as each combination rule, 30%, 40% rules and SRSS on curved bridges with the different radiuses of curvature. This study was carried out by response spectrum analysis of OO IC steel box girder bridge using SAP2000. It is concluded as follows: 1) In curved bridges, 30% and 40% rules tend to underestimate the critical response relatively to SRSS. 2) When bridges have smaller radiuses than 100m, difference between SRSS and 30% or 40% rules let run errors up as radiuses of curvature decreased.

  • PDF

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF