• 제목/요약/키워드: Root mean square value

검색결과 388건 처리시간 0.025초

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

PM2.5 Estimation Based on Image Analysis

  • Li, Xiaoli;Zhang, Shan;Wang, Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.907-923
    • /
    • 2020
  • For the severe haze situation in the Beijing-Tianjin-Hebei region, conventional fine particulate matter (PM2.5) concentration prediction methods based on pollutant data face problems such as incomplete data, which may lead to poor prediction performance. Therefore, this paper proposes a method of predicting the PM2.5 concentration based on image analysis technology that combines image data, which can reflect the original weather conditions, with currently popular machine learning methods. First, based on local parameter estimation, autoregressive (AR) model analysis and local estimation of the increase in image blur, we extract features from the weather images using an approach inspired by free energy and a no-reference robust metric model. Next, we compare the coefficient energy and contrast difference of each pixel in the AR model and then use the percentages to calculate the image sharpness to derive the overall mass fraction. Furthermore, the results are compared. The relationship between residual value and PM2.5 concentration is fitted by generalized Gauss distribution (GGD) model. Finally, nonlinear mapping is performed via the wavelet neural network (WNN) method to obtain the PM2.5 concentration. Experimental results obtained on real data show that the proposed method offers an improved prediction accuracy and lower root mean square error (RMSE).

Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Liu, Jiangyun;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1003-1021
    • /
    • 2015
  • MR dampers have been proposed for the control of cable vibration of cable-stayed bridge in recent years due to their high performance and low energy consumption. However, the highly nonlinear feature of MR dampers makes them difficult to be designed with efficient semi-active control algorithms. Simulation study has previously been carried out on the cable-MR damper system using a semi-active control algorithm derived based on the universal design curve of dampers and a bilinear mechanical model of the MR damper. This paper aims to verify the effectiveness of the MR damper for mitigating cable vibration through a full-scale experimental test, using the same semi-active control strategy as in the simulation study. A long stay cable fabricated for a real bridge was set-up with the MR damper installed. The cable was excited under both free and forced vibrations. Different test scenarios were considered where the MR damper was tuned as passive damper with minimum or maximum input current, or the input current of the damper was changed according to the proposed semi-active control algorithm. The effectiveness of the MR damper for controlling the cable vibration was assessed through computing the damping ratio of the cable for free vibration and the root mean square value of acceleration of the cable for forced vibration.

Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (Ⅱ) (Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (Ⅱ))

  • 이순혁;류경식
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.15-26
    • /
    • 2004
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. The optimal regionalization of the precipitation data were classified by the above mentioned regionalization for all over the regions except Jeju and Ulleung islands in Korea. Design rainfalls following the consecutive duration were derived by the regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root mean square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared between the regional and at-site frequency analysis. It has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design rainfall. Consequently, optimal design rainfalls following the classified regions and consecutive durations were derived by the regional frequency analysis using Generalized extreme value distribution which was identified to be more optimal one than the other applied distributions. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

A Comparative Study on the Various Blocking Layers for Performance Improvement of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.312-316
    • /
    • 2013
  • In this study, short-circuit preventive layer (blocking layer) was deposited between conductive transparent electrode and porous $TiO_2$ film in the DSSCs. As blocking layer, we selected the metal-oxide such as $TiO_2$, $Nb_2O_5$ and ZnO. The sheet resistance with each different blocking layers were 18 ${\Omega}/sq.$ for the $TiO_2$, 10 ${\Omega}/sq.$ for the $Nb_2O_5$ and 8 ${\Omega}/sq.$ for the ZnO, while the RMS (Root Mean Square) roughness value of DSSCs were 39.61 nm for the $TiO_2$, 41.84 nm for the $Nb_2O_5$ and 36.14 nm for the ZnO respectively. From the results of photocurrent-voltage curves, a sputtered $Nb_2O_5$ blocking layer showed higher performance on 2.64% of photo-electrochemical properties. The maximum of conversion efficiency which was achieved under 1 sun irradiation by depositing the blocking layer increased up to 0.56%.

Weight Estimation of the Sea Cucumber (Stichopus japonicas) using Vision-based Volume Measurement

  • Lee, Donggil;Kim, Seonghoon;Park, Miseon;Yang, Yongsu
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2154-2161
    • /
    • 2014
  • Growth analysis and selection of sea cucumbers (Stichopus japonicas) is typically performed through length or weight measurements. However, because sea cucumbers continuously change shape depending on the external environment, weight measurement has been the preferred approach. Weight measurements require extensive time and labor, moreover it is often difficult to accurately weigh sea cucumbers because of their wet surface. The present study measured sea cucumber features, including the body length, width, and thickness, by using a vision system and regression analysis to generate $R^2$ values that were used to develop a weight estimation algorithm. The $R^2$ value between the actual volume and weight of the sea cucumbers was 0.999, which was relatively high. Evaluation of the performance of this algorithm using cross-validation showed that the root mean square error and worst-case prediction error were 1.434 g and ${\pm}5.879g$, respectively. In addition, the present study confirmed that the proposed weight estimation algorithm and single slide rail device for weight measurement can measure weights at approximately 4,500 sea cucumbers per hour.

Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (I) (Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (I))

  • 류경식;이순혁
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.25-36
    • /
    • 2004
  • This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.

Fabrication of Metal-insulator-metal Capacitors with SiNx Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition

  • Wang, Cong;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.147-151
    • /
    • 2009
  • For integrated passive device (IPD) applications, we have successfully developed and characterized metalinsulator-metal (MIM) capacitors with 2000 $\AA$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which are deposited with the $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$. Five PECVD process parameters are designed to lower the refractive index and lower the deposition rate of $Si_3N_4$ films for the high breakdown electric field. For the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the atomic force microscopy (AFM) root mean square (RMS) value of about 2000 $\AA$ $Si_3N_4$ on the bottom metal is lowest at 0.862 nm and the breakdown electric field is highest at about 8.0 MV/cm with a capacitance density of 326.5 pF/$mm^2$. A pretreatment of metal electrodes is proposed, which can reduce the peeling of nitride in the harsh test environment of heat, pressure, and humidity.

The Latest Performance of Galileo Kinematic PPP at DAEJ Reference Station in South Korea

  • Choi, Byung-Kyu;Yoo, Sung-Moon;Roh, Kyoung-Min;Park, Pilho;Park, Jong-Uk
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권1호
    • /
    • pp.15-21
    • /
    • 2020
  • In October 2019, the European Galileo navigation system operates a total of 24 satellites, two of them are in the testing phase. There are enough satellites in operation to enable precise point positioning (PPP) using Galileo signals. The number of visible satellites for Galileo in South Korea is investigated. In addition, to assess the latest performance of the Galileo kinematic PPP, data received at DAEJ reference station from October 1 to October 7, 2019, are analyzed. Galileo kinematic PPP presents some results in two categories, single-frequency PPP (SPPP) and dual-frequency PPP (DPPP). The positioning accuracy for Galileo kinematic SPPP solutions is less than 1 m root mean square (RMS) in all direction components. The Galileo kinematic DPPP achieves the positioning accuracy with an RMS value of less than 7 cm in all direction components. The results show that the latest performance of Galileo kinematic PPP at DAEJ station in South Korea is still relatively poor compared to GPS kinematic PPP. However, the residuals of Galileo code measurements are smaller than those of GPS code measurements.

GIS와 PRISM을 이용한 고해상도 격자형 강수량 추정 (Estimation of High Resolution Gridded Precipitation Using GIS and PRISM)

  • 신성철;김맹기;서명석;나득균;장동호;김찬수;이우섭;김연희
    • 대기
    • /
    • 제18권1호
    • /
    • pp.71-81
    • /
    • 2008
  • In this study, in order to estimate high resolution precipitation with monthly time scales, Parameter-elevation Regressions on Independent Slopes Model (PRISM) was modified and configured for Korean precipitation based on elevation, distance, topographic facet, and coastal proximity. Applying this statistical downscaling model to Korean precipitation for 5 years from 2001 to 2005, we have compiled monthly grid data with a horizontal resolution of 5-km and evaluated the model using bias, root mean square error (RMSE), and correlation coefficient between the observed and the estimated. Results show that bias, RMSE, and correlation coefficient of the estimated value have a range from 0.2% to 1.0%, 19.6% (June) to 43.9% (January), and 0.73 to 0.84, respectively, indicating that the modified Korean PRISM (K-PRISM) is reasonably worked by weighting factors, i.e., topographic effect and rain shadow effect.