• Title/Summary/Keyword: Root inoculation

Search Result 298, Processing Time 0.026 seconds

Effects of Plant Age Inoculum Concentration and Inoculation Method on Root Gall Development of Clubroot Disease of Chinese Cabbage Caused by Planmodiophora brassicae (배추무사마병의 뿌리혹 형성에 미치는 묘령, 접종원 농도 및 접종방법의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.90-94
    • /
    • 1999
  • Effect of inoculum concentration inoculation method and plant age on development of clubroot disease of Chinese cabbage seedling were examined in growth chambers. Root galls were developed at the concentration of 105 resting spore or above per ml of incoulum and as the inoculum concentration became higher rate of development of root galls was faster. In the plants with root gall development fresh weight of above ground parts was reduced to 30-44% of that of healthy plants but root weight increased by 4-10 times. Growth of diseased plants was greatly reduced as compared to healthy plants. Planting in the diseased soil as a inoculation method was most effective for disease development showing uniform infections but time of initial root gall development was delayed by root soaking inoculation. Some plants inoculated by soil drenching method did not develop root galls. However root gall enlargement after its initial formation did not differ greatly among inoculation methods. Nine-day-old seedlings showed poor development of root gall but 16-days-old seedlings was found to be most adequate for inoculation for gall development.

  • PDF

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

An enhanced root system developmental responses under drought by inoculation of rhizobacteria (Streptomyces mutabilis) contributed to the improvement of dry matter production in rice

  • Suralta, Roel R.;Cruz, Jayvee A.;Cabral, Maria Corazon J.;Niones, Jonathan M.;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.231-231
    • /
    • 2017
  • Drought limits rice production under upland condition. This study quantified the effect of rhizobacteria inoculation on rice root system developmental response to drought and its role in maintaining high soil water use, and dry matter production under drought using NSIC Rc192 (rainfed lowland rice variety). The source of inoculant was Streptomyces mutabilis, a recently isolated rhizobacteria containing plant growth promoting compounds such as ACC deaminase, indole-3-acetic acid and phosphatase (Cruz et al., 2014, 2015). In the first experiment, pre-germination inoculation of seeds with S. mutabilis significantly increased the shoot and root (radicle) length as well as root hair lengths, relative to the non-inoculated control. In the second experiment, rice plants inoculated with S. mutabilis and grown in rootbox with soil generally had greater total root length under drought regardless of the timing of inoculations, relative to the non-inoculated control. Consequently, improved root system development contributed to the increase in soil water uptake under drought and thus, dry matter production. Among inoculation treatments, one-time inoculation of S. mutabilis either at pre-germination or pre-drought stress at 14 days after sowing (DAS), had significantly greater shoot dry matter production than three-time inoculation at pre-germination, at thinning (3 DAS) and at pre-drought (14 DAS). This study demonstrated the effectiveness of rhizobacteria (S. mutabilis) containing growth promoting compounds for enhancing drought dehydration avoidance root traits and improving the growth of rice plants under drought condition.

  • PDF

Selection of Resistant Hybrids of Atractylis Against Phytophthora drechsleri

  • Kim, Dong-Kil;Shim, Chang-Ki;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.227-230
    • /
    • 2001
  • Bioassay techniques using young leaves and roots were developed to screen resistance of Atractylis spp. against Phytophthora drechsleri. Among 638 plants collected from various regions of Korea from 1994 to 1996, 67 were pre-screened in fields naturally infested with P. drechsleri, which is the causal pathogen of rhizome rot of Atractylis. Among the pre-screened sources, 18 (ca. 26.8%) were highly resistant to the pathogen in leaf inoculation. In the root inoculation test, abundant sporangia were formed in susceptible plant roots, while only a few or no sporangia were produced on the roots which were found resistant in the leaf inoculation test. Among the selected resistant plants, A. japonica 96066 and 96104 were used to cross with another species, A. macrocephala 96362 that showed high yield with good quality of rhizome but susceptible to the pathogen. The F$_1$hybrids designated as HA03 turned out to be resistant to the pathogen, indicating that resistant gene(s) was inherited. Among intra-species hybrids of A. japonica, HA07 and HA09 were resistant to the pathogen in leaf inoculation and moderate in root inoculation. However, HA08 was susceptible in both inoculation tests. This result suggests that the parent material might be genetically heterogeneous. Further genetic study should be carried out to verify this phenomenon.

  • PDF

Differential Structural Responses of Ginseng Root Tissues to Different Initial Inoculum Levels of Paenibacillus polymyxa GBR-1

  • Jeon, Yong-Ho;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.352-356
    • /
    • 2008
  • Root discs of 4-year-old ginseng, Panax ginseng C. A. Meyer, were inoculated with the higher($10^8$ colonyforming units(CFU)/ml) and lower($10^6\;or\;10^5$ CFU/ml) initial inoculum levels of a plant-growth promoting rhizobacterium(PGPR), Paenibacillus polymyxa GBR-1 to examine rot symptom development and bacterial population changes on the root discs. At the higher inoculum level, brown rot symptoms developed and expanded on the whole root discs in which the bacterial population increased continuously up to 4 days after inoculation. In light and electron microscopy, ginseng root cells on the inoculation sites were extensively decayed, which were characterized by dissolved cell walls and destructed cytoplasmic contents. However, no rot symptoms were developed and the bacterial population increased only during the initial two days of inoculation at the lower inoculum level($10^6$ CFU/ml) of P. polymyxa GBR-1. At the lower inoculum level($10^5$ CFU/ml), boundary layers with parallel periclinal cell divisions, structurally similar to wound periderm, were formed internal to the inoculation sites, beneath which the cells were intact containing numerous normal-looking starch granules and no disorganized cell organelles, suggesting that these structural features may be related to the suppression of symptom development, a histological defense mechanism.

Effect of Dispersed and Proximate Inoculation Methods of Glomus etunicatum on Root Colonization of Sorghum-Sudangrass Hybrid

  • Lee, Seonmi;Selvakumar, Gopal;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Choi, Joonho;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.373-378
    • /
    • 2013
  • Information on the effective application method of arbuscular mycorrhizal fungi (AMF) inoculum is still inadequate. This work was performed to assess two AMF inoculation methods (dispersed and proximate) on root colonization of sorghum-sudangrass hybrid (Sorghum bicolor L.). In dispersed inoculation method, spores were inoculated in 2 kg pots of soil in which 5 day-old seedlings were transplanted and maintained for 50 days. In the proximate inoculation method, spores were first introduced in 500 mL pots where seeds were sown. After 10 days, the seedlings with the 500 mL soil were transferred to 2 kg pots without disturbing the contents. After 50 days of growth, root colonization and arbuscule abundance significantly increased (over 100%) in proximate method of inoculation. Moreover, sorghum-sudangrass hybrid had higher shoot growth (182.5 cm) and Glomalin related soil protein (GRSP) production in proximate method. Nutrient accumulation, particularly total nitrogen (82.61 mg $plant^{-1}$), was also found to be higher in proximate method of inoculation. Our results demonstrate that the proximate method of inoculation may improve the early stage mycorrhizal symbiosis and inoculum performance in Saemangeum reclaimed soil.

Effects of ectomycorrhizal fungi on soil-borne plant pathogenic fungi in red pine seedlings

  • Seo, Il-Won;Lee, Jong-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.89.1-89
    • /
    • 2003
  • Disease suppression by ectomycorrhizal(ECM) fungi has been demonstrated on red pine seedlings. Culturing of pathogenic fungi on petri plates containing culture filtrates of ECM fungi showed that culture filtrates of the ECM fungus Hebeloma cylindrosporum may inhibit the mycelial growth of all tested soil-borne plant pathogenic(SBPP) fungi upto 60%, In order to examine the effects of ECM fungi on SBPP fungi and on red pine seedlings, both symbiotic and pathogenic fungi were inoculated into the soil with red pine seedlings by three inoculation methods; pre-inoculation of SBPP fungi 10 days before inoculation of ECM fungi, simultaneous inoculation of both fungi, post-inoculation of SBPP fungi 60 days after inoculation of ECM fungi. Seedling mortality, seedling growth, and ectomycorrhizal formation by the combined treatments were examined and compared. Pine seedlings were dead by the pre-inoculation of pathogenic fungi, except Rhizina undulate which required 9-12 days, within 6 days after inoculation. Among pathogenic fungi tested, Fusarium oxysporum was the most pathogenic with the mortality of 44%. However, no dead seedlings were shown by simultaneous inoculation of both fungi or pre-inoculation of ECM fungi. In addition, pine seedlings treated by simultaneous or post-inoculation of SBPP fungi were relatively higher than those treated by pre-inoculation in diameter at root crown and the number of ectomycorrhizal roots. There were no significant differences among inoculation methods in root length and dry weight of treated seedlings. It means that ECM fungi somehow play a role in protecting primary roots of red pine seedlings against invasion by the SBPP fungi.

  • PDF

Control of Fusarium Wilt of Watermelon with the Root-Stock Grafting of Sicyos angulatus L. (안동오이 대목을 이용한 수박 덩굴쪼김병 방제)

  • 이순구;이원형
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.240-244
    • /
    • 1994
  • Watermelon plants grafted with the root-stock of wild-cucumber (Sicyos angulatus) were not infected by Fusarium oxysporum f.sp. niveum in pot inoculation and infected fields tests. Controlling efficacy of the root-stock grafting with S. angulatus on Fusarium wilt of watermelon was more excellent than that of the root-stock grafting with Lagenaria siceraria. The isolates of Fusarium oxysprum from cucurbitaceae plants had a certain host-specific pathogenicity, but they did not express the absolute one forma specialis-one host-plant phenomenon by the root dipping inoculation. The pathogenic isolates of Fusarium oxysproum from cucurbitaceae crops did not infect the root-stock plant such as S. angulatus, L. siceraria and Cucurbita ficifolia. The fast-wilting of watermelon caused by uncertain agents was observed in watermelon plant grafted with L. siceraria in the continuously cropping fields, but it was not observed in watermelon plants grafted with S. angulatus in the same fields.

  • PDF

Survey of Field Conditions of Clubroot Disease Incidence of Chinese Cabbage in Major Production Areas and Ecology of Root Gall Development (배추무사마귀병 발생실태와 뿌리혹의 생성생태)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • In 1997 surveys 82 out of 180 crucifer fields were infected with clubroot disease in a range of 1-100% of diseased plants and among crucifier crops Chinese cabbage was the most severe, In cropping systems Chinese cabbage-monocropping of Chinese cabbage-radish were found to be most common in major Chinese cabbage production areas. Welsh onion squash or paddy rice were also planted between cropping of Chinese cabbage. Paddy fields converted to upland were lowered in incidence of clubroot disease and fields with loam to silty loam soil were more severe in disease than those with sandy soil. Soil pH and organic contents were nor related to clubroot disease severity. Soil fauua such as total fungi bacteria actinomyces Pseudomonads and Bascillus were not correlated with severity of the disease. Root rall development on Chinese cabbage seedlings was initifially observed under a microscope 13 days after inoculation with Plasmodiophora brassicae but 18 days by naked eyes after inoculation. Root galls were formed mostly around collar roots and gradually spread to main root lateral roots and secondary root branches. Root galls started to enlarge greatly in size and weight from 23 days after inoculation. Chinese cabbage plants at mid-growth stage with root gall development were reduced to 1/2 of that of healthy plants in number of leaves 1/4-1/5 in above ground fresh weight 1/6 in root length but increased to 3 times in diameter of collar root. Diseased plants had little root hairs. Diseased Chinese cabbage plants at harvest were reduced by 9,1-11.8% in head weight compared to healthy plants a positive correlation was observed between root and head weight but those relationships were rot found in the diseased plants.

  • PDF

A New Method for Cultivation of Sclerotium of Grifola umbellata

  • Choi, Kyung-Dal;Lee, Kyung-Tae;Shim, Jae-Ouk;Lee, Youn-Su;Lee, Tae-Soo;Lee, Sang-Sun;Guo, Shun-Xing;Lee, Min-Woong
    • Mycobiology
    • /
    • v.31 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Sclerotia of Grifola umbellata were cultivated by two methods such as burying and root inoculation methods. The sclerotia of G. umbellata produced by the burying method were $6.0{\sim}6.8{\times}3.4{\sim}4.6{\times}1.8{\sim}1.9cm$(Width$\times$Length$\times$Thickness) in size and $17.3{\sim}19.6g$ in weight, respectively. Their increase rate was $1.10{\times}1.12$ times. On the other hand, the sclerotia cultivated by the root inoculation method were $18.3{\sim}31.5{\times}12.5{\sim}26.4{\times}3.1{\sim}3.7cm(W{\times}L{\times}T)$ in size and $219.1{\sim}576.6g$ in weight, respectively. Their growth increment was $11.18{\sim}39.77$ times. The rhizomorphs of Armillaria mellea were developed with a high density under fallen leaves layer covering cultivation site, and distributed mainly between soil surface and soil depth of about 10 cm as well as colonized prominently on the inoculated wood logs. Fungal interaction between G. umbellata and A. mellea were observed mainly in the stage of white sclerotium of G. umbellata. The sclerotia of G. umbellata which were developed newly and harvested in the root inoculation method were twined with root hairs of host tree and rhizomorphs of A. mellea. The sclerotia of G. umbellata decomposing root hairs of host tree were confirmed through SEM examination. Physiochemical characteristics of soil in all cultivation sites had no significant differences. Soil pH were in the range of pH $3.98{\sim}4.40$. Organic matters were the range of $17.97{\sim}23.86%$ and moisture contents of soil were $12.00{\sim}18.20%$. Soil temperatures showed $12.9{\sim}13.8^{\circ}C$ in November and $22.0{\sim}23.9^{\circ}C$ in August, respectively. In conclusion, the root inoculation method seems to be a practical method for cultivating sclerotia of G. umbellata due to its many advantages such as simplicity of inoculation process, shortening of cultivation periods and facility of harvest.