• Title/Summary/Keyword: Root cap

Search Result 35, Processing Time 0.021 seconds

Autotrophic Growth of Limonium spp. 'Ocean Blue' Plantlets In Vitro as Affected by PPF, NAEH and $\textrm{CO}_2$ Concentration (스타티스 ‘오션 블루’의 자가영양배양시 광도, 환기횟수 및 $\textrm{CO}_2$ 농도가 소식물체의 기내 생육에 미치는 영향)

  • 정기원;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • Growth and development of Limonium spp.‘Ocean Blue’plantlets were studied under three levels of photosynthetic photon flux (PPF),70,150 and 220 $\mu$mol. $m^{-2}$ . $s^{-1}$ , two levels of $CO_2$ concentration, 500 and 1000 $\mu$mol. $m^{-1}$ , and two levels of number of air exchanges per hour (NAEH),0.1 $h^{-1}$ and 2.8 $h^{-l}$. Explants were obtained from photomixotrophically-micropropagated plantlets. Four explants per vessel were cultured under cool-white fluorescent lamps for 16 h. $d^{-1}$ at 25$\pm$11$^{\circ}C$ and 70~80% relative humidity. In treatments of 2.8 $h^{-1}$ NAEH, a 10 mm round hole made on the vessel cap was sealed with a microporous filter and two $CO_2$ concentrations in the culture rooms were provided from a liquefied $CO_2$ tank. Fresh and dry weights, height, length of the longest root, number of loaves, and leaf area significantly increased with increasing PPF and especially, $CO_2$ concentration. Growth was enhanced by a 2.8 $h^{-1}$ NAEH. Overall, treatment with a 220 $\mu$mol. $m^{-2}$ . $s^{-1}$ PPF and a 1000 $\mu$mol. $m^{-1}$ $CO_2$ resulted in the most vigorous growth of Limonium spp. ‘Ocean Blue’ plantlets.s.

The study on enhanced micro climate of the oyster mushroom cultivation house with multi-layered shelves by using CFD analysis (CFD 분석에 의한 느타리버섯 재배사 환경균일성 향상 연구)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Lim, Yeong-Taek
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • The oyster mushroom cultivation house typically has multiple layers of growing shelves that cause the disturbance of air circulation inside the mushroom house. Due to this instability in the internal environment, growth distinction occurs according to the area of the growing shelves. It is known that minimal air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves their quality. For the purpose of this study, a CFD analysis FLUENT R16 has been carried out to improve the internal environment uniformity of the oyster mushroom cultivation house. It is found that installing a section of the working passage towards the ceiling is to maintain the internal environment uniformity of the oyster mushroom cultivation house. When all the environment control equipment - including a unit cooler, an inlet fan, an outlet fan, an air circulation fan, and a humidifier - were operated simultaneously, the reported Root Mean Square (RMS) valuation the growing shelves were as follows: velocity 23.86%, temperature 6.08%, and humidity 2.72%. However, when only a unit cooler and an air circulation fan operated, improved RMS values on the growing shelves were reported as follows: velocity 23.54%, temperature 0.51%, and humidity 0.41%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, it is essential to reduce the overall operating time of the inlet fan, outlet fan, and humidifier, while simultaneously appropriately manage the internal environment by using a unit cooler and an air circulation fan.

Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium (발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현)

  • Park, Jung-Won;Park, Byung-Ki;Kim, Sang-Mok;Kim, Byung-Ock;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Effect of $CO_2$ Concentration, NAEH and Light Intensity on the Photoautotrophic Growth of Campanula punctata 'Rubriflora' Plantlets In Vitro (자주초롱꽃의 기내 자가영양배양시 $CO_2$농도, 환기횟수 및 광도가 생장에 미치는 영향)

  • Shim, Jae-Nam;Kim, Gyeong-Hee;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.233-238
    • /
    • 2005
  • Growth of Campanula punctata 'Rubriflora' plantlets, as affected by three levels of photosynthetic photon flux (PPF), 70, 110, and $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, two levels of $CO_2$ concentration, 500 and $1,500{\mu}mol{\cdot}m^{-1}$, and two levels of number of air exchanges per hour (NAEH), 0.1 and $2.8 h^{-l}$, was studied. Explants were obtained from photomixotrophically-micropropagated plantlets. Four explants were planted in each $3.7{\times}10^{-4}m^3$ polycarbonate box containing MS basal medium and no added sucrose. Explants were cultured under cool-white fluorescent lamps for $16h{\cdot}d^{-1},\;at\;25\pm1^{\circ}C$ temperature, and $70\~80\%$ relative humidity In treatments of $2.8h^{-1}$ NAEH, a 10mm round hole made on the vessel cap was sealed with a microporous filter. For higher $CO_2$ concentrations in the culture room, $CO_2$ gas was provided from a tank of liquefied $CO_2$. Fresh and dry weights, length of the longest root, and number of leaves significantly increased with increasing PPF and especially $CO_2$ concentration. Length of the longest root, number of leaves, fresh and dry weights, and chlorophyll concentration were enhanced with increased NAEH. However, leaf area was the smallest in the $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}\;PPF\;2.8h^{-1}$ NAEH and especially, $1,500{\mu}mol{\cdot}mol^{-1}\;CO_2$ concentration treatment. Treatment effect became more produced with time. Overall, treatment with $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}\;PPF\;and\;1,500{\mu}mol{\cdot}mol^{-1}\;CO_2$ gave the most vigorous growth.