• Title/Summary/Keyword: Root Analysis

Search Result 3,491, Processing Time 0.03 seconds

Distribution and Relation of Mineral Nutrients in Various Parts of Korea Ginseng (Panax ginseng C. A. Meyer) (고려인삼의 부위간 무기성분 분포 및 상관관계)

  • Lee, Chong-Hwa;Shim, Sang-Chill;Park, Hoon;Han, Kang-Wan
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.55-64
    • /
    • 1980
  • The distribution pattern of mineral nutrients, among various Parts of Korea ginseng (Panax ginseng C.A. Meyer) was investigated to understand ginseng nutrition by simple correlation analysis. Five·year old ginseng plants grown under four different nutritional environments were sampled and separated into leaf, petiole, stem, rhizome, cortex and epidermis of tap foot, central part of tap root, cortex and epidermis of lateral root, central part of lateral root, fine root in the middle of truly, for chemical analysis. Between mineral nutrients in root, N and P showed highly significant positive correlation each other and with Mg and Cu while all other elements (K, Ca, Mg, Fe, Mn, Zn, Cu, B) showed highly significant positive correlation each other. In shoot, number of mineral nutrient pairs haying significant relation was much less than in root. (Negative: P with Ca or B, K with N, Fe, Mn or Cu, Positive: N with Mg, Fe, Mn or Cu, K with Zn, Ca with Mg, Zn, or B, Fe Mn Cu each other, Mn with B.) The number of pairs having significant correlation in whole plant was approximately the same as the number in root but three of them showed significant negative correlation. The distribution pattern similarity of mineral contents among various parts was also discussed in relation to physiological significance in Korea ginseng plant.

  • PDF

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Vibration Analysis of Rotating Cantilever Beams with an Elastically Restrained Root (탄성지지단을 갖는 회전하는 외팔 보의 진동해석)

  • Yun, Kyung-Jae;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.689-694
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of cantilever beams with an elastically restrained root. Mass and stiffness matrices are derived explicitly by considering the elastically restrained root coupling effect between stretching and bending motion. Numerical results show that the two effects influence the vibration characteristics of rotating beams significantly. The results also present the magnitude of the elastic stiffness of the root to avoid the dynamic buckling. The method presented in this paper can be used to provide accurate predictions of the variations of natural frequencies of rotating beams with an elastically restrained root.

  • PDF

Analysis of Field Condition for Proper Waterproofing Materials applied to Green Roof System for Depot (도시철도 차량기지의 기반녹화에 적합한 방수시스템 선정을 위한 환경 조건 분석)

  • Min, Kwang-Man;Kwon, Shi-Won;Choi, Sung-Min;Kwak, Kyu-Sung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.127-131
    • /
    • 2006
  • Depot have a lagged behind structure in the side of building up the view. With this reason, people have been recognized depot as hatred facility causes to have car noise, air pollution. In the other hand, depot become a underground and complex facility as a higher-value added building, and moreover, it need to understand the environment that depot structure have a specific field condition to apply green roof system. 1) Analysis proper waterproofing material and root barrier apply to depot need root penetrating test method 2) Suggest root barrier and waterproofing material relate to maintain and construction for green roof system 3) Construction condition for depot have crack movement of structure by vehicle vibration and root penetrating force by plant growth

  • PDF

Prevalence and features of distolingual roots in mandibular molars analyzed by cone-beam computed tomography

  • Choi, Mi-Ree;Moon, Young-Mi;Seo, Min-Seock
    • Imaging Science in Dentistry
    • /
    • v.45 no.4
    • /
    • pp.221-226
    • /
    • 2015
  • Purpose: This study evaluated the prevalence of distolingual roots in mandibular molars among Koreans, the root canal system associated with distolingual roots, and the concurrent appearance of a distolingual root in the mandibular first molar and a C-shaped canal in the mandibular second molar. Materials and Methods: Cone-beam computed tomographic images of 264 patients were screened and examined. Axial sections of 1056 mandibular molars were evaluated to determine the number of roots. The interorifice distances from the distolingual canal to the distobuccal canal were also estimated. Using an image analysis program, the root canal curvature was calculated. Pearson's chi-square test, the paired t-test, one-way analysis of variance, and post-hoc analysis were performed. Results: Distolingual roots were observed in 26.1% of the subjects. In cases where a distolingual root was observed in the mandibular molar, a significant difference was observed in the root canal curvature between the buccolingual and mesiodistal orientations. The maximum root canal curvature was most commonly observed in the mesiodistal orientation in the coronal portion, but in the apical portion, maximum root canal curvature was most often observed in the buccolingual orientation. Conclusion: The canal curvature of distolingual roots was found to be very complex, with a different direction in each portion. No correlation was found between the presence of a distolingual root in the mandibular first molar and the presence of a C-shaped canal in the mandibular second molar.

Physicochemical Properties and Antioxidant Capacities of Different Parts of Ginger (Zingiber officinale Roscoe) (생강(Zingiber officinale Roscoe) 부위별 이화학적 특성 및 항산화 활성)

  • Lee, Hye-Ryun;Lee, Jong-Hun;Park, Cheol-Seong;Ra, Kyung-Ran;Ha, Jin-Sook;Cha, Mi-Hyun;Kim, Se-Na;Choi, Youngmin;Hwang, Jinbong;Nam, Jin-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1369-1379
    • /
    • 2014
  • The physicochemical characteristics and antioxidant activities of leaf, stem, and root of ginger (Zingiber officinale R.) were determined. Nutrient composition, reducing sugar, saponin, mineral, heavy metal, total phenolic and total flavonoid contents, and antioxidant activities based on DPPH radical scavenging and FRAP assay were measured. Catechins, gingerols, shogaols, and capsaicin compositions were also determined by HPLC. The contents of water, proteins, fats, carbohydrates, fiber, and ash from ginger root were 6.4, 6.8, 3.2, 65.4, 7.3, and 18.2%, respectively. Crude fiber contents of leaf and stem were 4~5 times higher than those of root (P<0.05), and reducing sugar content of stem was about 3 times higher than those of root. Crude saponin contents were in the order of stem

The Regulation of Root Hair-specific Expansin Genes

  • Cho, Hyung-Taeg
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.18-21
    • /
    • 2004
  • The root hair provides a major entering spot for the symbiotic legume rhizobia. It is obvious that dynamic cell wall modification occurs in the plant root hair during the early microbe invasion. Expansins are nondestructive cell wall-modifying proteins that are involved in cell growth and differentiation. Among about 40 expansin genes in Arabidopsis, two expansin genes are expressed specifically in the root hair cell. Orthologous genes of this Arabidopsis root hair expansins have been found in other Brassica members, rice, and Medicago truncatula (a legume). In this review, I discuss the probable function of expansins during the early symbiotic process between the root hair and microbes and the regulation of root hair expansin genes in a comparative approach.

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

Guidelines for Performing Root Cause Analysis (근본원인분석 수행을 위한 지침)

  • Lee, Hyeon-Jeong;Choi, Eun-Young;Ock, Min-Su;Lee, Sang-Il
    • Quality Improvement in Health Care
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Root cause analysis (RCA) is systematic process for identifying contributing factors and root causes. It detects system-level vulnerabilities and prevents them from occurring in the future. In many countries, RCA guidelines have been developed and used for these purposes, and various practical tools are suggested according to stages of RCA implementation. In Korea, adverse events occur in 7.2-8.3 percent of inpatients according to studies conducted in hospitals. However, frontline staffs are suffering from lack of knowledge about RCA implementation. This study introduces RCA guidelines that may be used in hospitals to improve the quality of medical care and patient safety.

Studies on the Analysis of Dammarane Aglycones of Korean Ginseng

  • Lee, Wang-Kyu;Kim, Byong-Kak;Kim, Hai-Jung
    • YAKHAK HOEJI
    • /
    • v.21 no.3
    • /
    • pp.163-166
    • /
    • 1977
  • To establish a convenient quantitative method for dammarane glycosides in Korea ginseng, the ginseng roots harvested at the cultivation areas of Ga Pyeong, Geum San and Jeung Pyeong were dried, powered, extracted with methanol and hydrolyzed. The ginseng root obtained at Gang Hwa was divided into three parts: main root, laterial root and cortex, and then these were treated in the same manner as the above. The various hydrolysates thus obtained were subjected to the analysis by an instrument coupled with flame ionization detector. The results showed that panaxadiol contents in the ginsengs of the three different cultivation sites were similar. However, the lateral root of Gang Hwa ginseng was found to contain the largest amount of panaxadiol among the three parts of ginseng. This method of the analysis for panaxadiol in ginseng was found to be one with relative rapidity and ease.

  • PDF