• Title/Summary/Keyword: Room temperature solid-phase

Search Result 119, Processing Time 0.023 seconds

A resistivity anomaly at 380 K in reproduced LK-99

  • Sangjin Kim;Kwang-Tak Kim;Jeonghun Kang;Dong-Hyeon Gim;Yoon Han Lee;Kee Hoon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.10-13
    • /
    • 2023
  • To confirm the room-temperature superconductivity at ambient pressure as claimed in recent arXiv preprints by Lee et al., we followed the original authors' systematic solid-state synthesis recipe to reproduce Cu-doped Pb-apatite, known as LK-99. Using X-ray diffraction and Raman spectroscopy, we identified inclusion of various impurities alongside the apatite phase in our sample. While the sample exhibited an overall semiconducting behavior in electrical transport, an intriguing resistivity anomaly at 380 K was observed, possibly originating from a structural phase transition of the Cu2-δS impurity. Based on the transport and magnetization measurements, we conclude that the sample is a non-magnetic semiconductor, with absence of superconductivity.

Reactions of Aryl Halides with Phenoxides and Alkoxides by Phase Transfer Catalysis

  • Jo, Bong Rae;Park, Seong Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.126-129
    • /
    • 1984
  • The reaction of aryl halides with phenoxides and alkoxides were investigated under phase transfer catalytic conditions. 2,4-Dinitro- and 4-nitrohalobenzenes reacted readily with phenoxides in NaOH(aq)-benzene in the presence of Bu4N+Br, affording the products quantitatively. Although the aryl halides did not react with alkoxides under the same condition, the reactions were completed within 2 hours at room temperature when conducted under solid-liquid phase transfenr catalytic condition. The reactivity of aryl halides was in the order, Ar = 2,4-dinitrophenyl > 4-nitrophenyl, and X = F > Cl, consistent with the SNAr mechanism. The reactivity of oxyanions increased with the change of reaction condition from liquid-liquid to solid-liquid phase transfer catalysis. The results were explained with the concentration and the degree of hydration of the anion in benzene.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

A Study on the Characteristics of Martensitic Transformation Behaviors in In-X(X=Pb,Sn) Alloys (In-X(X=Pb,Sn) 합금의 마르텐사이트변태거동 특성에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.233-238
    • /
    • 2010
  • The phase transformations and the shape memory effect in In-rich Pb alloys and In rich-Sn alloys have been studied by means of X-ray diffractometry supplemented by metallographic observations. The alloys containing 12~15 at.%Pb transform from the ${\alpha}_2$ (fct) phase to the ${\alpha}_1$ (fct) phase by way of an intermediate phase (m phase) on cooling. The results of X-ray diffraction show that the metastable intermediate phase is observed both on cooling and heating, and has a face-centered orthorhombic (fco) structure. It is concluded that the ${\alpha}_1{\rightleftarrows}{\alpha}_2$ transformation is expressed by the ${\alpha}_1{\rightleftarrows}m{\rightleftarrows}{\alpha}_2$ transformation both on usual cooling and heating with the rate more than $8{\times}10^{-3}$ K/s. The $m{\rightleftarrows}{\alpha}_2$ transformation takes place with a mechanism involving macroscopic shear and are of diffusionless (martensitic) type. The temperature hysteresis in the two transformations is 10~13 K between the heating and cooling transformations. The alloys containing 0~11 at.%Sn are -phase solid solutions with a face centered tetragonal structure (c/a > 1) at room temperature, the axial ratio increasing continuously with tin content. The In-(11~15) at.%Sn alloys are mixtures of ${\alpha}$ and ${\beta}$ phases, the ${\beta}$ phase having a f. c. tetragonal structure (c/a < 1). The alloys containing more than 15 at.%Sn are ${\beta}$-phase solid solutions. The In-(12.9~15.0) at.%Sn alloys show a shape memory effect only when quenched to the temperature of liquid nitrogen, although their effect becomes weak and finally disappears after keeping at room temperature for a long time. The ${\beta}{\rightarrow}{\alpha}^{\prime}$ phase transformation is of the diffusionless (martensitic) type, and takes place between 330 K at 12.9 at.%Sn and 150 K at 14.5 at.%Sn. The hysteresis of transformation temperatures on heating and cooling is considerably large (29~40 K), depending on the composition. Both In-Pb and In-Sn alloys showed distinct the shape memory effects.

Oxygen Evolution Reaction at Electrodes of Single Phase Ruthenium Oxides with Perovskite and Pyrochlore Structures$^{**}$

  • 최은옥;권영욱;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.972-976
    • /
    • 1997
  • Single phase ruthenium oxides with perovskite (ATi1-xRuxO3 (A=Ca, Sr)) and pyrochlore structure (Bi2Ru2O7, Pb2Ru2O6.5) have been prepared reproducibly by solid state reaction methods and their electrocatalytic activities for oxygen evolution have been examined by Tafel plots. Tafel slopes vary from a low value of 42 mV/decade up to 222 mV/decade at room temperature. The high exchange current densities and high Tafel slopes compared with those obtained from the RuO2 DSA electrode at the crystalline single phase metal oxide electrodes suggest that they are better electrocatalysts at low overpotentials. A favorable change in the Tafel slope for the oxygen evolution reaction occurs as the ruthenium content increases. Substitution of Ti for Ru in the perovskite solid solutions enhanced their chemical stability by losing marginal electrochemical activity.

A study on Electrical Properties of the Polyamic Acid Alkylamine Salts(PAAS) LB films (Polyamic Acid Alkylamine Salts(PAAS) LB 박막의 전기적 특성에 관한 연구)

  • 이호식;이원재;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.298-301
    • /
    • 1997
  • This paper describes the thermally stimulated current(TSC) measurements arachidic acid(AA) and polyamic acid alkylamine salts(PAAS) LB film, which is a precursor of polyimide(PI). The measurements were performed from room temperature to about 250$^{\circ}C$ and the temperature was increased at a rate of 0.02 $^{\circ}C$/s linearly[4]. It shows that peaks of TSC are observed at about 80$^{\circ}C$ in the arachidic acid and about 80$^{\circ}C$, 160$^{\circ}C$ in the PAAS LB films. The DSC and TGA of PAAS, arachidic acid are measure. Monolayer phases on the water subphase such as Langmuir(L) films and the phase transitions from gas phase to solid phase via liquid phase are observed using Brewster angle microscopy(BAM). BAM is also used to observe the Langemuir-Blodgett(LB) films.

  • PDF

Solid-Phase Synthesis of Unfunctionalized Arenes Via the Traceless Cleavage of Sulfonate Linkers

  • Kim, Chul-Bae;Cho, Chul-Hee;Jo, Min-Jy;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3655-3659
    • /
    • 2011
  • The hydrogenolysis of polymer-bound arenesulfonates by 2-propylmagnesium chloride was performed through reductive cleavage of the C-S bond in the presence of a nickel catalyst. The reaction underwent in the highest efficiency by adding 15 equiv of the nucleophile in two additions with $dppfNiCl_2$ in THF. Various unfunctionalized naphthalene, biphenyl, and stilbene derivatives were produced in good yields by the traceless sulfonate linker system at room temperature.

The Theoretical Study of the Measuring Thermal Diffusivity of Semi-Infinite Solid Using the Photothermal Displacement

  • Jeon, PiIsoo;Lee, Kwangjai;Yoo, Jaisuk;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1712-1721
    • /
    • 2004
  • A method of measuring the thermal diffusivity of semi-infinite solid material at room temperature using photothermal displacement is proposed. In previous works, within the constant thickness of material, the thermal diffusivity was determined by the magnitude and phase of deformation gradient as the relative position between the pump and probe beams. In this study, however, a complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of parameters, such as, radius and modulation frequency of the pump beam and the thermal diffusivity, was studied. We propose a simple analysis method based on the zero -crossing position of real part of deformation gradient and the minimum position of phase as the relative position between two beams. It is independent of parameters such as power of pump beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Electrical Properties of ZnxMn3-xO4 Ceramics for Application as IR Detectors

  • Kim, Kyeong-Min;Lee, Sung-Gap;Lee, Dong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.227-230
    • /
    • 2016
  • ZnxMn3-xO4 (0.95≤x≤1.20) specimens were prepared using a conventional solid state reaction method. All specimens were sintered in air at 1,200℃ for 12 h, cooled at a rate of 2℃/min to 800℃, and subsequently quenched to room temperature. We investigated the electrical properties of ZnxMn3-xO4 specimens with various amounts of ZnO for use as IR detectors. At a composition of x≥1.15, the ZnO phase precipitates beside the spinel structure. The electrical resistivity at room temperature, activation energy, responsivity, and detectivity of a Zn1.10Mn1.90O4 specimen are 653.2 kΩ-cm, 0.392 eV, 0.016 V/W, and 7.52×103 cmHz1/2/W, respectively.