• Title/Summary/Keyword: Room temperature oxidation

검색결과 297건 처리시간 0.109초

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

활성탄 슬러리를 이용한 $SO_2$ 가스의 흡착 및 산화반응 속도 (Adsorption and Oxidation Reaction Rate of $SO_2$ in Slurries of Activated Carbon)

  • 최용택;신창섭;이태희
    • 한국대기환경학회지
    • /
    • 제3권1호
    • /
    • pp.41-46
    • /
    • 1987
  • Adsorption and reaction studies were made for the catalytic oxidation in aqueous slurries of activated carbon at room temperature and atmospheric pressure. In order to analyze the reaction rate, the mechanism was assumed by the steps of nonhomogeneous catalytic reaction. The experimental result show that oxidation rate was controlled by the reaction between adsorbed molecular oxygen and sulfur dioxide on the catalyst surface. Ar room temperature, the equat5ion of reaction rate was given as $ro_2 = 2.49 \times 10^{-7} P_O_2^{0.604}$.

  • PDF

고온하에서 질화규소의 트라이볼로지적 특성 (Tribological Characteristics of Silicon Nitride on Elevated Temperature)

  • 김대중;채영훈;김석삼
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.282-288
    • /
    • 2000
  • A sliding friction and wear test for silicon nitride (Si,N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000$^{\circ}C$ using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000$^{\circ}C$ was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750$^{\circ}C$ was caused by brittle fracture whereas from 750$^{\circ}C$ to 1000$^{\circ}C$ the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.

포름알데히드 상온산화 촉매의 상용화를 위한 촉매 제조 및 공정 운전조건 최적화 연구 (A Study on the Optimization of Process Operation & Catalyst Preparing for Commercialization of Formaldehyde Room Temperature Oxidation Catalyst)

  • 이상현;박인출;김성수
    • 한국지반환경공학회 논문집
    • /
    • 제17권10호
    • /
    • pp.5-11
    • /
    • 2016
  • 본 연구에서는 포름알데히드를 상온산화시켜 제거하는 $Pt/TiO_2$ 촉매의 상용화 인자들이 조사되었다. 활성 귀금속 함량 최적화를 위해 촉매의 백금(Pt) 담지량을 변화시켜 제조 후 성능을 평가하였으며, 그 결과 1wt% 함량이 가장 이상적인 함량임을 확인하였다. 또한 활성금속인 Pt를 환원하여 제조한 환원 촉매가 상온에서 우수한 포름알데히드 산화 능력을 나타내었다. 이를 통해 활성금속의 산화가에 따라 성능이 변화될 수 있으며, 백금의 경우 metallic Pt($Pt^0$)로 존재할수록 포름알데히드 상온산화 성능이 증진될 수 있음을 확인하였다. 촉매의 운전인자를 도출하기 위한 공간속도 영향 평가 결과 공간속도가 낮을수록 촉매량 증가에 의해 포름알데히드 전환율이 증진되는 결과를 나타내었다. 또한 공기 내 반드시 존재하는 물질인 수분의 공기 내 공존 시 영향 평가를 실시하였으며, 그 결과 수분이 공존할 때 포름알데히드 산화반응이 수분이 존재하지 않은 조건에서의 활성보다 증진되었다. 상기 결과들을 통해 어떤 추가 에너지원 없이도 포름알데히드를 제거 할 수 있는 상온산화 촉매 상용화를 위한 핵심인자들을 확인하였다.

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

Impedance Analysis of Resistance Anomaly of $BaTiO_3$ based PTC thermistor

  • Chun, Myoung-Pyo;Myoung, Seong-Jae;Nam, Joong-Hee;Cho, Jeong-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.182-182
    • /
    • 2009
  • The effect of Re-oxidation on the PTCR properties of Sm-doped barium titanate ceramics was investigated by means of impedance spectroscopy. Electrical properties such as resistance vs. temperature, I-V curve were measured and microstructure was observed with SEM photography. Sample was fabricated with thick film process such as tape casting of green sheet, screen printing of electrode pattern, stacking, firing in reduced atmosphere and re-oxidation, etc. As the temperature of re-oxidation increases, resistance jump as a function of temperature enhances but resistance at room temperature increases. These behavior of resistance as a function of temperature, dependent on the re-oxidation condition, is analyzed with Cole-Cole impedance plot and is shown to be related with the degree of oxidation of grain boundary regardless of grain core during re-oxidation process of sample.

  • PDF

Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구 (Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature)

  • 김성철;김거종;홍성창
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.657-662
    • /
    • 2018
  • 본 연구에서는, $Pt/TiO_2$ 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향을 조사하기 위하여 각기 다른 물리적 특성을 가지는 다양한 $TiO_2$ 지지체를 이용하여 $Pt/TiO_2$ 촉매를 제조한 후 평가하였다. 촉매의 물리화학적 특성을 조사하기 위하여 XPS, CO-chemisorption, BET, CO-TPD 분석을 수행하였다. 그 결과, active particle diameter가 작을수록, metal dispersion, surface area가 클수록 우수한 CO 상온산화 반응을 나타내었다. 이러한 물리적 특성은 active site의 수를 증진시켜 대상물질은 CO의 흡착량의 증가를 야기시켰다. 또한, $O_2$-consumption이 클수록 우수한 산소 전달 능력을 통해 보다 높은 CO 상온산화 반응활성을 나타내었다.

고온하에서 지르칼로이-4 튜브의 프레팅 마멸 특성 (The Fretting Wear Characteristics of Zircaloy-4 Tube at High Temperature)

  • 백승철;김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.89-95
    • /
    • 2001
  • The fretting wear characteristics of Zircaloy-4 tube at room and high temperature were Investigated experimentally. In this study, the number of cycles, slip amplitude and temperature were selected as main factors of fretting wear. The results of this research showed that the wear volume Increased with the Increase of slip amplitudes and the number of cycles but decreased with temperature and the coefficient of friction were observed different tendency between room and high temperature. According to SEM(EDS) only gross slip were observed on the surface of both specimens and compacted oxide were on worn surfaces. XRO patterns showed that the crystallization of ZrO$_2$ were observed on the worn surface at high temperature. The fretting wear were Investigated due to oxidation and accumulation of plastic flow.

  • PDF

플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과 (Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy)

  • 고재은;이종국;최한철
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

다상 금속간 화합물의 내마모 및 내산화 특성 (Wear and Oxidation Charateristics of Two Phase Intermetallic Compounds)

  • 이종훈;배종욱;이상율
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.183-192
    • /
    • 1998
  • The wear and oxidation resistance of two phase nickel aluminides was investigated. Wear tests of various heat-treated specimens at room temperature and at $500^{\circ}C$ were performed under no lubricant condition in air by using a ball-on-disk type tribotester. Isothermal oxidation tests were made at $1100^{\circ}C$ in air flowing at the rate of 70cc/min and at $1000^{\circ}C$ in air by using TGA. Experimental results from wear tests showed that nickel aluminide with a higher content of Al had an improved wear resistance at both temperatures. Also the examination of the wear tracks after wear test at both room temperature and $500^{\circ}C$ indicated that regardless of the alloy compositions the wear tracks of the two phase nickel aluminides showed an abrasive type wear The improved oxidation resistance observed in the Ni-34at%Al alloy could to be attributed to the microstructural difference between the aluminides. An accelerated oxidation along the thin layer of $Ni_3AL$ along the grain boundary observed in the microstructure of the Ni-32at%Al aluminide could be attributed to the poor oxidation resistance.

  • PDF