• 제목/요약/키워드: Roof green system

검색결과 127건 처리시간 0.023초

Ecological Green Roofs in Germany

  • Kohler, Manfred
    • 한국환경복원기술학회지
    • /
    • 제7권4호
    • /
    • pp.8-16
    • /
    • 2004
  • The industrialization of central Europe more than 100 ago marked the beginning of densely concentrated buildings in quickly growing cities. A cheap type of roofing material of that time was tar. But it was dangerous because it was high inflammable. Then some roofer had a splendid idea. They used sandy material as a final layer atop the impermeable tar layer. These roofs were much more fire resistant than the typical roofs. In this sandy layer some plant species began to grow spontaneously. This was the beginning of the green roof history of modern Europe. A number of these green roofs survived both world wars. In the early 80's in Berlin alone, 50 such buildings existed and they continued to be waterproof until the present day. Since the 1992 Earth Summit of 1992 in Rio de Janeiro(http://www.johannesburgsummit.org/html/basic_info/unced.html) the term "sustainable development" became of central interest of urban designers. In city regions green roofs had become synonymous with this term. With a small investment, long-lasting roofs can be created. Further back in history, more exciting examples of green roofs can be found. The hanging gardens of antiquity are well-known. There are also green roofs built as insulation against cold and heat all over the world. For over 20 years, roof greening in central Europe has been closely examined for various reasons. Roof greening touches several different disciplines. Of primary interest is the durability of the roofs. But ecologists are also interested in green roofs, for instance in biodiversity research. The beneficial effect of greening on water proofing was also proven. For some time, the issue of fire protection was investigated. According to tests, green roofs received a harsh careful rating. Their fire protective property is considered similar to that of tile roofs. Another recent impulse for the green roof movement in Germany has come from the evident improvement of storm water retention and the reduced burden on the sewer system. The question of whether and how much energy green roofs can save has become an urgent question. The state of the research and also various open questions from a central European point of view will be discussed in the context of international collaboration. Apart from academic considerations, those who involve themselves in this issue take a predominantly positive view of the numerous existing green roofs in Germany. In some cities, green roofs are the typical construction technique for new buildings. A few outstanding examples will conclude this review. In Germany, about 20 companies, some of which operate internationally, specialize in green roof consulting. Learning from each other in an open-ended way with respect to different construction techniques and applications in various climatic regions can only be accomplished through such international collaboration as is taking place here.

저관리 경량형 옥상녹화에서 유기물 멀칭재 유형에 따른 토양수분과 동자꽃의 생육 특성 (Growth Characteristics of Lychnis Cognate and Soil Moisture by Organic Mulching Material Type in Extensive Green Roof System)

  • 박선영;채예지;최승용;윤용한;주진희
    • Ecology and Resilient Infrastructure
    • /
    • 제9권2호
    • /
    • pp.107-112
    • /
    • 2022
  • 본 연구는 유기물 멀칭재 종류에 따른 토양수분함량과 동자꽃의 생육반응을 비교·분석하여 저관리 옥상녹화에서 멀칭재의 효용성을 알아보고자 수행하였다. 실험구는 멀칭재를 사용하지 않은 대조구 (Cont.; Control)와 코코칩 (C.O; Cocochip), 우드칩 (W.O; Woodchip), 짚거적 (S.T; Straw), 톱밥 (S.A; Sawdust) 등, 총 5개의 처리구로 조성하였다. 실험결과, 유기물 멀칭재 유형에 따른 토양수분함량은 W.O > S.T > Cont. > C.O > S.A 순으로 높게 나타났으며, 특히 톱밥에서 유의적 차이를 보였다. 생육 측정 결과, 초장에서 S.T > Cont. > C.O > W.O > S.A의 순으로 생육이 좋았으며, 초장을 제외한 다른 생육항목에서의 멀칭재별 유의적인 차이는 미미하였다. 상대엽록소함량과 체내수분량은 모두 무처리구보다 우수하게 나타나 유기 멀칭재 처리가 동자꽃의 엽록소함량 및 체내수분량 유지에 효과적인 것으로 판단된다. 특히 실험구 내 토양수분함량은 멀칭재 자체의 성질에 의해 영향을 받는 것으로 나타나 저관리 옥상녹화에서 각 식물의 특성에 적합한 멀칭재 사용이 요구되며 수분 스트레스에 약한 수종 선정 시 유기물 멀칭을 통해 극복할 수 있을 것으로 판단된다.

공동체정원과 사회통합기능이 있는 Green Community Rediscovery Center의 설계 (Design of Green Community Rediscovery Center with Community Gardens and Social Integration Functions)

  • 이응직;이형숙;윤은주;칼루 엑페게어;고성철
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.29-36
    • /
    • 2011
  • The aim of this study was to study the functions and roles of Green Community Rediscovery Center (GCRC) in terms of community integration, to design GCRC with various types of green roofs, and to investigate the possibility of applying a renewable energy system (e.g., PV) to the building greenery systems. The four major functional modules for GCRC were suggested: implementation of ecopark and community gardens with environmental education programs, implementation of green housing model with education programs, Discover Science Center, and implementation of green business model with education programs. Three major functions of the center are also presented in terms of design: 1) functions of community gardens; 2) establishment of a green business model, community composting system and an urban farming system; and 3) roles of community gardens in social interactions within GCRC. GCRC provides residents with the opportunities of community gardens, urban farming based on a successful recycling system, as well as a green business model and environmental education programs near their homes. The air temperature of the green roof (utilizing Sedum sarmentosum as a cover plant) was approximately $3^{\circ}C$ lower than that of the non-green roof, indicating a potential efficiency increase in PV systems for GCRC. It was concluded that the GCRC suggested would enhance the neighborhood satisfaction, improve the quality of life and contribute to social integration and community regeneration.

영산홍을 이용한 저관리 옥상녹화 시스템의 식물생육 및 토양특성 평가 (Assessment of Plant Growth and Soil Properties of Extensive Green Roof System for Rhododendron indicum Sweet)

  • 김인혜;허근영;신현철;박남창
    • 원예과학기술지
    • /
    • 제28권6호
    • /
    • pp.1057-1065
    • /
    • 2010
  • 최근 도시의 환경문제로 인하여 옥상녹화에 많은 관심이 집중되고 있다. 옥상녹화 기술의 핵심은 식물의 생육을 건전하게 유지하는 동시에 건축물에 미치는 하중을 최소화할 수 있는 토양층을 조성하는 것이다. 본 연구는 옥상 환경에서 관목류의 생육을 건전하게 유지하면서 하중을 최소화할 수 있는 최적의 저관리 녹화 시스템을 구명하기 위한 연구의 일환으로서 상록관목인 영산홍을 식물재료로 선정하고 펄라이트를 주재료로 한 토심 30cm, 45cm, 60cm의 인공토양층을 건축물 옥상에 조성한 후, 2001년부터 2008년까지 식물 생육, 토양의 물리적 화학적 특성 변화, 건축물에 미치는 하중에 대한 평가를 수행하였다. RS-A-45와 RS-A-60에서는 실험 기간 동안 100%의 식물 생존율을 나타냈고 RS-A-30과 RS-B-60에서는 2008년에 각각 33%와 67%의 식물 생존율을 나타냈다. RS-A-45에서는 지속적으로 가장 높은 생육량이 나타났고 토양의 물리적 화학적 특성도 가장 우수하게 나타났다. 조성 후 8년이 경과한 시점에서 식물체를 포함한 포장용수 시 RS-A-45의 총중량은 $376.6kg{\cdot}m^{-2}$으로 옥상 녹화 허용 적재하중인 $500kg{\cdot}m^{-2}$보다 상당히 낮아 하중 측면에서도 적합한 것으로 평가되었다.

바텀애시를 활용한 인공경량토양의 개발 및 성능 평가 (Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash)

  • 김철민;김민우;조근영;최나래
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.252-258
    • /
    • 2018
  • 대규모의 에너지 소비 및 인구의 증가로 온실가스 증가 및 열섬 현상이 빈번한 도시는 녹지공간의 증대가 요구되었고, 한정된 도시 공간에서는 건축물 옥상에 녹지공간을 형성하는 옥상녹화가 증대되었다. 옥상녹화에 사용하는 경량토양은 주로 펄라이트를 사용하나 비산, 분진 등 작업환경의 악화로 다른 경량토양의 요구가 증대되었다. 한편 화력발전소에서 발생하는 바텀애시는 재활용을 위한 다양한 연구가 진행되었는데, 인공경량토양으로의 활용가능성도 확인된 바 있다. 본 연구는 기존의 바텀애시 활용 인공경량토양보다 혼합량이 높은 바텀애시를 사용한 인공경량토양을 개발하고자, 바텀애시의 물리적, 화학적 특성을 분석한 후 유기물의 필요성을 확인하고, 바크, 퇴비, 코코피트 등의 유기재료 배합을 달리하여 최적의 배합을 도출하였고, 이 배합을 조경설계기준에서 제시한 토양성능 항목에 적합여부를 확인한 결과, 중급 정도의 성능을 갖는 인공경량토양임을 확인하였다.

옥상녹화에서 토심, 토양배합비 및 지피식물에 따른 식재지반 수분 및 온도변화 (Change of the Moisture and Temperature in Planting Ground as Effected by Different Soil Thickness, Soil Mixture Ratios and Ground Cover Plants in the Green Roof System)

  • 주진희;윤용한
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2010
  • This paper has attempted to investigate the change in soil moisture volume and temperature of architecture by planting ground(soil thickness and soil mixture ratio) and ground cover plants(Sedum sarmentosum, Zoysia japonica, Chrysanthemum zawadskii) for middle region green roof system. For this, a test was conducted on the roof of Konkuk University building from April 2009 to October 2009. In terms of treatment, five types(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) depending on soil mixture ratio and two types(15cm, 25cm) by soil depth were created. Results of soil moisture volume by soil mixture ratio in the 15cm soil thickness showed that the difference was significance between simple soil and mixture soil treatment, however, the statistical significance was not recognized according to soil mixture ratio. In case of 25cm soil thickness, soil moisture volume by soil mixture ratio was more higher 7Vol.%~10Vol.% in the mixture soil than simple soil treatment. In terms of districts planted ground cover plants, soil volume moisture differed among plants in the order Zoysia japonica 17.74 Vol.%$34.86^{\circ}C$, district non-planted $27.49^{\circ}C$, Sedum sarmentosum $25.11^{\circ}C$, Chrysanthemum zawadskii $23.08^{\circ}C$, Zoysia japonica $24.45^{\circ}C$ respectively So, concrete surface showed more higher $5^{\circ}C{\sim}15^{\circ}C$ than other things among the all the time. Result of inner temperature of the architecture and soil, it was measured inner of architecture $25.69^{\circ}C$, inner district non-planted $24.29^{\circ}C$, Chrysanthemum zawadskii $23.90^{\circ}C$, Zoysia japonica $24.02^{\circ}C$, Sedum sarmentosum $25.13^{\circ}C$, respectively.

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • 한국BIM학회 논문집
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 - (A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea -)

  • 이지영;이경선
    • 교육시설 논문지
    • /
    • 제18권2호
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구 (A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency)

  • 김태한;박성은
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.