• Title/Summary/Keyword: Roof box

Search Result 27, Processing Time 0.027 seconds

A Convergence Study on the Flow near Vehicle by the Configuration of Roof Box (루프 박스의 형상별 차량 주위에서의 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.99-105
    • /
    • 2019
  • In this study, the flow analysis around vehicle was carried out on various kinds of roof box models installed at the roof of vehicle. Through the analysis of fluid flow and pressure, we investigated which model was more suitable for driving. The four types of models were designed with their respective shapes of models 1, ${\beta}$, ${\delta}$ and ${\gamma}$, and the driving speed of car was set as 20 m/s. It was confirmed that the pressure for model ${\beta}$ became greatest compared to other models. And model ${\delta}$ has the lowest pressure among all models of roof boxes by installing a canoe with the structure for cable type. As the design data with the durability of roof box obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the car body at real life.

Hybrid Green Roof-Planter Box System Design and Construction for PNU GI/LID Facility

  • Ladani, Hoori Jannesari;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.192-192
    • /
    • 2016
  • Nowadays, stormwaters have been affected by urbanization and climate change. These transition can cause many problems for hydrologic cycle by increasing runoff volume like flood and low water quality. As with other metropolises and peninsulas, Busan has involved with these problems too. Therefore, it is really vital to do some arrangements to solve them by low impact development (LID) technology. In fact, LID has been introduced to reduce runoff by applying some techniques such as green infrastructure (GI). In order to deal with the aforementioned issues in Busan, this study attempts to design and construct a hybrid green roof-planter box system at Pusan National University GI/LID Facility based on local weather. For this purpose, we used experiment and modeling method on some planter boxes and optimized them by trial and error method.

  • PDF

Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조안전성 평가)

  • Shin Kwang-Bok;Ryu Bong-Jo;Lee Jea-Youl;Lee Sang-Jin;Jo Se-Huen
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.338-343
    • /
    • 2005
  • We have evaluated the structural integrity of a sandwich composite train roof which can find a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof was 11.45 meter long and 1.76 meter wide. The reinforced frame was inserted in sandwich panels to improve the structural performance of train roof structure and had the shape of hollow rectangular box. The finite-element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-condition system. The 3D sandwich FE model was introduced to simulate the hollow aluminum frames which jointed to both sides of the sandwich train roof. The results shown that the structural performance of a sandwich composite train roof under load conditions specified was proven and the use of aluminum reinforced frame was beneficial with regard to weight savings in comparison to steel reinforced frame.

  • PDF

The Effect of the flexural stiffness of Floor Slabs on The Seismic Response of Multi-story Building Structures (바닥판의 휨강성이 고층건물의 지진거동에 미치는 영향)

  • 김현수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.170-177
    • /
    • 2000
  • Recently many high-rise apartment buildings are constructed using the box system which is composed only of concrete walls and slabs. Commercial softwares such as ETABS used for the analysis of high-rise apartment buildings are employing the rigid diaphragm assumption for simplicity in the analysis procedure. In general the flexural stiffness of floor slabs are ignored in the analysis, This assumption may be reasonable for the estimation of seismic response of framed structures. But in the case of the box system used in the apartment buildings floor slabs has major effects on the lateral stiffness of the structure. So if the flexural stiffness of slabs in the box system is ignored the lateral stiffness may be significantly underestimated, For these reasons it is recommended to use plate elements to represent the floor slabs. In the study A typical frame structure and a box system structure are chosen as the example structure. When a 20 story frame structure is subjected to the static lateral loads the displacements of the roof are 15.33cm and 17.52cm for the cases with and without the flexural stiffness of the floor slabs. And in case of box system the roof displacement was reduced from 16.18cm to 8.61cm The model without the flexural stiffness of floor slabs turned out to elongate the natural periods of vibration accordingly.

  • PDF

Assessment of Roof-rainwater Utilization System and Drought Resistance of Ground Cover Plants (지피식물을 이용한 우수저장형 옥상녹화 시스템 및 식물 내건성 평가)

  • Kang, Tai-Ho;Zhao, Hong-Xia
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • In order to evaluate 2 extensive green roof systems(Sedum Box Roof System and Roof-rainwater Utilization System) for urban greening and select ground-cover plants, which can adapt well to the drought tolerance in an extensive green roof system on 12 species. This study was carried out in order to suggest an experimental base in assessment of the Green Roof-rainwater Utilization System and selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. The drought-resistance of ground cover plants subjected to dry processing time were evaluated using relative water content on leaves, relative electric conductivity and chlorophyll content in 12 kinds of plants, and the relation between soil water content under drought stress. Drought resistance of the plants were subject to rooftop drought resistance treatments. The result showed that with the increase of stress time, the relative water content and chlorophyll content on leaves were in a downward trend while the relative electric conductivity was in an upward trend. Among the 12 species of ground cover plants, excluding Pulsatilla koreana, Ainsliaea acerifolia was selected for rooftop plants because they showed resistance to drought strongly and took adaptive ability. These results showed that drought tolerance of plants in Roof-rainwater Utilization System were stronger than the Sedum Box Roof System. Therefore, the Roof-rainwater Utilization System is good for plants. It helps them adapt well to the drought tolerance in rooftops and can be used for urban greening.

A Study on Ecological Application to Buildings on the Streets for the Improvement of Environmental Harmony at Streetscape - Focused on the Three-dimensional Greenery System - (가로경관의 친환경성 증진을 위한 가로변건축물의 생태요소 적용에 관한 연구 - 입체녹화를 중심으로 -)

  • Jeong, Choon-kuk;Kim, Ki-hwan
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.13-18
    • /
    • 2008
  • Recently it is urgent issue in every department that problem from environmental disruption such as global warming. As the case of streetscape works essentially at city scenery, it is inevitable that changing from present view, which centers facilities and buildings, to environmental harmonic scenery. This study plans climate adjusting ability and improvement of thermal efficiency by putting ecological elements to buildings on a street which are essential factors of streetscape. Ultimately, this not only makes a pleasant environment but also revives being withered earth. Street-environment on eco-scape will take a part in designing sustainable city. This study acquires the way how buildings on a street get applied ecological elements as following. Roof level part : the greening surface of the rooftop(included plant box type), the greening roof as a type of pergola, the greening surface of the middle floor rooftop(included plant box type). Elevation part : climbing type, downfall type, espalier, flower bed in balcony type, wall-installing type, water wall type, other design types. Ground level part : paving the whole surface with permeability, paving the gap with permeability, plant box type, ground plant type, waterside zone, wetland, fence greening type, terrace greening type, retaining wall greening type.

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

Performance Evaluation for the Application of Roof Green Box Unit System Combined with Engineering P.E.Waterproof and Root Penetration Sheet (엔지니어링 PE방수.방근시트가 결합된 박스 유닛형 옥상 녹화 시스템 적용을 위한 성능평가)

  • Oh, Chang-Won;Hong, Jong-Chul;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • According to the increment of urban buildings, the demand of eco-environment space will be also increased. Therefore, the artificial ground green system on a roof will be supplied gradually. In this study, the concept of simplification, unification and prefabrication was widely applied to supply green system. Consequently, the box unit system with a continuous soil layer was developed, and adhesive property, wind resistance and insulation property of this system were evaluated for site application. As a results of adhesive property and wind resistance test, comparing with design wind pressure and wind velocity, this system was safe at the height of 100m building located in urban. In addition, results of temperature measurement for 120 days showed 17% higher insulation property at daytime and 45% higher insulation property at night than normal box unit system owing to continuous soil layer.

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

A Weight-reduction Design Method by Underframe Material Substitution in a Box-type Bodyshell with Cut-outs (Cut-out이 있는 Box형 차체의 하부구조 소재대체 경량화 설계 방법)

  • Cho, Jeonggil;Koo, Jeongseo;Jung, Hyunseung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2013
  • In this paper, a theoretical weight-reduction method was suggested to substitute an underframe material of a box-type bodyshell having cut-outs with an alternative light-weight material. To utilize the material substitution method previously developed for a box-type hybrid bodyshell not having cut-outs, we derived a box-type baseline model without cut-outs which is similar to the stiffness condition of a box-type bodyshell having cut-outs. To do this, the thicknesses of roof and walls of the baseline model were determined such that the deflection of the baseline model under a distributed vertical load condition is equal to the sum of the theoretical section deflections of the original box model with cut-outs. Next, to derive a hybrid bodyshell by under-frame material substitution, the material substitution method for a box-type hybrid bodyshell without cut-outs was applied to the box-type baseline model. Finally, we compared the FE simulation results of the derived hybrid bodyshells having cut-outs for various materials with the theoretical results of the suggested method, and we obtained their good correlations.