• 제목/요약/키워드: Roof

검색결과 2,228건 처리시간 0.028초

팔작지붕과 북한의 현대 조선식 건축: 선택과 배제 (Paljak Roofs and Modern Joseon Architecture in North Korea: Selection and Exclusion)

  • 박동민
    • 건축역사연구
    • /
    • 제28권2호
    • /
    • pp.65-76
    • /
    • 2019
  • Modern Joseon Architecture is North Korea's unique building style that interprets Korean traditional architecture in a modern way, and its most distinctive design feature is the Paljak roof that decorates the upper part of the buildings. This paper argues that continuous attempts at characterizing the nature of traditional Korean architecture in the late 1950s and early 1960s developed the theoretical rationale for the exclusive use of the Paljak roof in Modern Joseon Architecture. It also argues that the construction of the Pyongyang Grand Theater and the Okryu Restaurant during this period became a decisive moment for the formalization of the Paljak roof. The double roof rafters and gables and the "cheerful yet solemn" roofline were considered as main characteristic features of the Korean roof and the Paljak roof perfectly fits this description. Particularly, in North Korean society where Kim Il Sung became idolized as an impersonalized deity, an anecdote in which Kim Il Sung fixed a prominent gabled roof in the Pyongyang Grand Theater into a Paljak roof has allowed for the roof to gain an exclusive status. Hence, almost all Modern Joseon Architecture since the 1960s accepted the Paljak roof's monopoly position, rather than experimenting with other traditional roof types.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • 제36권5호
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

탄소섬유 복합재로 된 자동차 루프에 대한 동특성 해석 및 실험 (Analysis and Experiment on dynamic characteristics of a Carbon Fiber Reinforced Composite Automotive Roof)

  • 제형호;진용선;김찬묵;강영규;사종성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.330-335
    • /
    • 2003
  • Analysis and experiment on dynamic characteristics of automotive roof have been carried out experimentally and numerically to design a lightweight roof. Finite element analysis of a conventional steel automotive roof was verified by experiments on vibration characteristics. The dynamic analysis of carbon fiber reinforced composite automotive roof shows that the roof stiffness changes as the fiber orientation of the laminated panel changes. Optimization results yielded a composite roof, which was 52% lighter, than the steel conventional steel automotive roof. This paper addresses a design strategy of composite roof for weight reduction.

  • PDF

Green Roof System의 다양한 성능 추구를 위한 공법 제시 및 성능 비교 실험 연구 (A Study of the Proposes of GRS Prototype for various purpose achievement and it's Efficiency Comparative Experiment)

  • 장대희;김현수;이건호;박창영
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2006
  • Green Roof Systems are embossed that realize ecological architecture as a substantially alternative plan. So, a Purpose of the study is seeking to optimize expectation effect through the Green Roof System. we set possible object and propose the prototype on the basis of the existing Green roof System technologies. We visualize a proposed Prototype apply various materials and methods. and we analyse the effects of Green Roof System upon our City climate with use energy efficiency comparison the Green roof system with the Concrete Rooftop. We'll Provide the low data for The prospects of City climate improvement through the a ripple effect on Green Roof System and for activation of Green Roof Technology.

냉방부하 최소화를 위한 지붕의 최적기울기에 관한 연구 (A Study on the Optimum Slope of the Roof for Minimum Cooling Load)

  • 태원진
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.119-123
    • /
    • 2005
  • The main purpose of this study is to define an optimum slope of the roof that demands minimum cooling load of the building, when the roof is affected by the solar and wind energy. Two different roof shapes were chosen: hip, gabled. The cooling load of building having those roof shapes was calculated through the computer simulation, using DOE program. For the simulation, the angle of the roof and angle of the orientation was changed. In the conclusion of this paper, an optimum slope of the roof which causes minimize cooling load is presented according to the roof shape and orientation. The result of this study could provide a practical design guideline for determining the roof angle for various climatic conditions.

옥상녹화 평지붕의 표면온도 저감효과에 대한 고찰 (A Consideration On The Surface Temperature Reducing Effect Of Green Roof System Flat Roof)

  • 이두호;이응직
    • KIEAE Journal
    • /
    • 제12권3호
    • /
    • pp.83-88
    • /
    • 2012
  • This study analyzed the measured value came out by the field test to verify the surface temperature reduction of the flat roof due to green roof, and confirmed the influence of the green roof based on it, and assessed the possibility of saving structures' energy and reducing $CO_2$ emission of structures. For the actual measurement, the differences of the average atmospheric temperature of the green roof and non-green roof flat roof were $8.67^{\circ}C$ and $0.787^{\circ}C$, and the average floor temperature gaps were $11^{\circ}C$ and $2.008^{\circ}C$ in October and November respectively. It was expected that if it's measured on around summer solstice that the temperature gets higher, the deviation of the surface temperature should be bigger, and it was confirmed that the green roof eventually raises insulating effect of structures and will influence on cooling and heating effects such as energy saving and insulating.

옥상녹화가 PV모듈 발전량에 미치는 영향 고찰 (A study on the effect that the green roof has on the performance of PV module)

  • 유동철;이응직
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

스마트 TMD를 이용한 개폐식 대공간 구조물의 지진응답제어 (Seismic Response Control of Retractable-roof Spatial Structure Using Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.91-100
    • /
    • 2016
  • A retractable-roof spatial structure is frequently used for a stadium and sports hall. A retractable-roof spatial structure allows natural lighting, ventilation, optimal conditions for grass growth with opened roof. It can also protects users against various weather conditions and give optimal circumstances for different activities. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. A tuned mass damper (TMD) is widely used to reduce seismic responses of a structure. When a TMD is properly tuned, its control performance is excellent. Opened or closed roof condition causes dynamic characteristics variation of a retractable-roof spatial structure resulting in off-tuning. This dynamic characteristics variation was investigated. Control performance of a passive TMD and a smart TMD were evaluated under off-tuning condition.

모델을 이용한 하절기 옥상정원 해석 (The Analysis of Green Roof during the Summer by Numerical Method)

  • 변기홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권5호
    • /
    • pp.51-62
    • /
    • 2016
  • The purpose of this paper is to study the effectiveness of a green roof by simple mathematical model. The developed model simulates a green roof during the summer. The results explain and support the claims in the literature such that effectiveness of a green roof depends on the climate condition, and on the insulation condition of the roof. If insolation can not be reduced more than 60% by the shading effects of a green roof, more active measures than green roof seem necessary. The analysis tools like presented in the paper is necessary especially to consider climate effect, to design, and also to test green roof.