• Title/Summary/Keyword: Rolling roll

Search Result 555, Processing Time 0.026 seconds

A Study on Coolant and Roughness Variation in the Cold Rolling (냉간압연 가공시 압연유와 조도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1149-1157
    • /
    • 1995
  • The research for variation of coolant film thickness and separating force has been investigated following the examination for friction profile of work roll and roughness change of strip surface in rolling mill producting actual commercial products. The obtained results are as follows ; (1) Coolant film thickness in cold rolling has been increased relative to the circumferential velocity of work roll, and formation of coolant films has decreased with the smaller diameter of work roll. (2) Separating force is related to the formation of coolant film, and large separating force is needed to the formation of coolant film but it is constant after formation of appropriate film. (3) Wear and roughness alleviation of work roll is larger in bottom-roll than in top-roll on cold surface is larger in the direction of width than in roll direction, and changes of roughness and strip surface hardness rarely occurred after 3 passes.

A Study on the Fault Diagnosis of the 3-D Roll Shape in Cold Rolling

  • Lee, Chang-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2174-2181
    • /
    • 2004
  • The metal processing system usually consists of various components such as motors, work rolls, backup rolls, idle rolls, sensors, etc. Even a simple fault in a single component in the system may cause a serious damage on the final product. It is, therefore, necessary to diagnose the faults of the components to detect and prevent a system failure. Especially, the defects in a work roll are critical to the quality of strip. In this study, a new 3-D diagnosis method was developed for roll shape defects in rolling processes. The new method was induced from analyzing the rolling mechanism by using a rolling force model, a tension model, the Hitchcock's equation, and measurement of the strip thickness, etc. Computer simulation shows that the proposed method is very useful in the diagnosis of the 3-D roll shape.

Evolution of Strain States and Microstructures During Three-roll Screw Rolling of Copper Rods (Three-roll Screw Rolling 공정 시 동봉재의 변형상태와 미세조직의 발달)

  • Kim, S.H.;Park, E.S.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • In order to investigate the evolution of strain states during screw rolling, the samples of copper rod were rolled in a three-roll screw rolling mill. Microstructure observations and hardness measurements were carried out for examining the deformation history during screw rolling. The finite element method(FEM) was employed to calculate the evolution of strain states during screw rolling. The strain state in the roll gap is quite inhomogeneous through the rod thickness layers. It turned out that shear strain gradients through the thickness layers are reduced by applying a higher reduction.

Effect of rolling parameters on the evolution of texture during asymmetrical cold rolling of aluminum sheets (알루미늄 판재의 비대칭 냉간압연 시 집합조직 발달에 미치는 압연변수의 영향)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.84-86
    • /
    • 2007
  • Aluminum sheets were asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls in order to intensify the shear deformation. During asymmetrical cold rolling of aluminum sheets, a reduction per a rolling pass, initial sheet thickness, roll diameter, roll velocity ratio were varied to investigate the effect of rolling parameters. The formation of through thickness shear texture was related to the ratio of the contact length between the roll and sample($l_c$) to the sheet thickness(d). The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates $\dot{\varepsilon}_{13}$ and $\dot{\varepsilon}_{11}$ along the streamline in the roll gap.

  • PDF

Effect of friction between roll and sample on residual shear strains in AA1050 sheet during asymmetrical rolling (비대칭 압연한 AA1100 판재에서 잔류전단변형에 미치는 롤과 재료간의 마찰의 영향)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.156-158
    • /
    • 2003
  • Sheets of aluminum alloy 1050 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The variation of the shear strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced residual shear strain gradients throughout the thickness layers.

  • PDF

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Roll Groover Design and Roll Speed Set-up in Bar Rolling Process Design using Rigid-thermo-viscoplastic FEM (강열점소성 유한요소법을 적용한 봉형상압연 공정설계에서의 공형 설계 및 롤속도 설정)

  • 권혁철;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.88-97
    • /
    • 1999
  • In this study, a systematic approach for roll pass design in bar rolling was studied. To minimize the trial and errors in the process design, a roll CAD system and a FE analysis system were combined. Based on the system, a methodology for roll pass design by FEM was studied. At first, designed process was compared with the FE analysis results and process redesign based on the FEM results was performed to obtain the specified final geometry. Then, empirical formula for roll speed set-up was compared with the FE analysis results. Further study on various simulations for bar rolling will help in making up for the inaccuracy in the currently used empirical roll speed rules. In addition, verification of the accuracy of the FE analysis system must be performed using experimental data in the industry.

  • PDF

Development of Deformation Texture in Aluminum Sheets during Asymmetrical Rolling with a Roll Speed Ratio of 1.5/l.0 (롤속도 비 1.5/l.0 비대칭 압연 시 알루미늄 판재에서 변형집합조직의 형성)

  • 지영규;정효태;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed with a roll speed ratio of 1.5/l.0. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

A Study on the Characteristic of Work Roll texturing for the Temper Rolling (조질압연용 Work roll의 조도가공 특성에 관한 연구)

  • 전태옥;전언찬;김순경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.505-511
    • /
    • 1993
  • The results were obtained with changes according to the surface roughness of work roll and method to make the peak count on the roll in the temper rolling, and factors to affect to the work roll surface in actual rolling machine(ie. Temper mill). Conclusions are as follows. 1. E.D.T(Electro-discharge texturing)roll is more uniform roughness distribution than shot blasted roll and it's life time is two timees longer than that of shot blasted because it has more sine wave roughness. 2. The higher peak count of surface roughness, the more time is necessary to work roll texturing In shot blasting method, Surface roughness is relating to the grit size,impeller speed and hardness of roll material, But is can't control the peak count. 3. In shot blast texturing, Surface roughness of temper rolled strip which is transfered surface roughness of work roll is more ununiform than that of E.D.T roll 4. E.D.T roll has more uniform than the shot blasted roll and has more peak count than that of shot blasted roll. The surface of painted strip to image clarity is superior to that of shot blasted roll because E.D.T roll has more peak count and smooth surface.

  • PDF

An Approximate Analysis of Host Strip Rolling-a New Approach (열간 압연 공정의 신근사해법)

  • 전만수;강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1155-1165
    • /
    • 1990
  • A new method of predicting effect of rolling parameters on roll pressure, roll force, and power and energy consumptions in hot strip rolling is presented. The method is based on approximate solutions for velocity, strain rate, and stress distributions in the roll gap. The degree of approximation was examined by the finite element solutions. The theoretical predictions were compared with experimental data from hot rolling of steel strip and steel plate.