• Title/Summary/Keyword: Rolling contact fatigue

Search Result 108, Processing Time 0.027 seconds

Damage Monitoring of Rolling Contact Fatigue in Wheel Specimen for High Speed Train Using Electro-Magnetic Sensor (전자기센서를 이용한 고속철도용 차륜재의 구름접촉피로 손상 모니터링)

  • Kwon, Seok-Jin;Hwang, Ji-Sung;Seo, Jung-Won;Lee, Jin-Yi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.600-606
    • /
    • 2012
  • Upon investigation of the damaged wheels for high speed train it was determined that the damage was caused by rolling contact fatigue during operation of train. The major problems that railway vehicle system using wheel-rail has to face during operation of railway vehicle are rolling contact fatigue, cracks in wheels, cracks in rails and wheel-rail profile wear. If these deficiencies are not controlled at early stages the huge economical problems due to unexpected maintenance cost in railway vehicle can be happened. Also, If the accurate knowledge of contact conditions between wheel and rail can be evaluated, the damage of wheel can be prevented and the maintenance operation can save money. This paper presents the applicability of electro-magnetic technique to the detection and sizing of defects in wheel. Under the condition of continuous rolling contact fatigue the damage of wheel has continuously monitored using the applied sensor. It was shown that the usefulness of the applied sensor was verified by twin disc test and the measured damaged sizes showed good agreement with the damaged sizes estimated by electro-magnetic technique.

The Development of High Contact Fatigue Strength P/M Sprocket for the Silent Chain System

  • Yamanishi, Yuuji;Tsutsui, Tadayuki;Ishii, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.142-143
    • /
    • 2006
  • Recently, automotive engines have changed to the silent chain system in order to reduce noise and to improve reliability. High contact fatigue strength is needed for the sprockets of silent chain system. As a result, a high-contact-fatigue-strength P/M material was developed using the technology of surface rolling, which densifies the surface layer of sintered parts. It was established that the contact fatigue strength of the developed material was a great improvement over that of the conventionally used sintered material.

  • PDF

Rolling Contact Fatigue Analysis According to Defect Size on Rail (레일의 표면결함크기에 따른 구름접촉수명평가)

  • Seo, Jung-Won;Kwon, Seong-Tae;Lee, Dong-Heong;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.637-642
    • /
    • 2011
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

  • PDF

A Study on Rolling Contact Fatigue of Rail by Damage Mechanics (손상역학에 의한 레일의 구름접촉피로 연구)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

Experimental study on rolling contact fatigue of railway wheel (철도차량 차륜의 구름접촉피로의 실험적 연구)

  • Seo Jung Won;Hu Hun Mu;Lee Dong Hyeong;Chung Heung Chai
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.714-719
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheel/set life and safety has been requested. One of the major reasons of railway wheel damage is a contact zone failure by wheel/rail contact. In this paper, we conducted a rolling contact fatigue test for wheels using a specimen of wheel/rail. the behavior of hardeness and residual stress below the contact surface of the test pieces in the fatigue process were analyzed. Finally, the relation between fatigue life and contact pressure was obtained.

  • PDF

Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway (구름접촉피로시험을 통한 고속철도 레일연마량 분석)

  • Chang, Ki-Sung;Sung, Deok-Yong;Park, Yong-Gul;Choi, Jin-Yu;Lee, Dong-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF

Effect of Rail Surface Damage on Contact Fatigue Life (레일표면손상이 접촉피로수명에 미치는 영향)

  • Seo, Jung-Won;Lee, Dong-Hyong;Ham, Young-Sam;Kwon, Sung-Tae;Kwon, Seok-Jin;Cho, Ha-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

Analysis of Contact Stress with Partial Slip in Wheel-rail Rolling Contact (차륜-레일 구름접촉 시 슬립율에 따른 접촉응력의 변화 해석)

  • Lee, Dong-Hyong;Seo, Jung-Won;Kwon, Seok-Jin;Choi, Ha-Yong;Kim, Chul-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.643-648
    • /
    • 2011
  • Fatigue crack in most rails take place by rolling contact between wheel and rail in railway industry. Therefore, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. In this paper the steady-state rolling contact problem of KTX wheel and rail (UIC60) has been studied with three-dimensional finite element analysis. The variation of contact pressure and contact stresses on rolling contact surface were obtained using the finite element method. The three-dimensional distribution of contact stresses on the contact surface are investigated. Results show that the distribution of shear stress and contact stress (von Mises) on the contact surface varies rapidly as a result of the variation of stick-slip region. The contact stress at the leading edge is greater than at the trailing edge because of stick and slip phenomena.

  • PDF

Surface Densification Coupled with Higher Density Processes Targeting High-performance Gearing

  • Hanejko, Francis;Rawlings, Arthur;King, Patrick;Poszmik, George
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.738-739
    • /
    • 2006
  • This paper will describe a powder and processing method that facilitates single press-single sintered densities approaching $7.5g/cm^3$. At this sintered density, mechanical properties of the powder metal (P/M) component are significantly improved over current P/M technologies and begin to approach the performance of wrought steels. High performance gears have the added requirement of rolling contact fatigue durability that is dependent upon localized density and thermal processing. Combining high density processing of engineered P/M materials with selective surface densification enables powder metal components to achieve rolling contact fatigue durability and mechanical property performance that satisfy the performance requirements of many high strength automotive transmission gears. Data will be presented that document P/M part performance in comparison to conventional wrought steel grades.

  • PDF