• Title/Summary/Keyword: Rolling contact

Search Result 390, Processing Time 0.133 seconds

Prediction of Rolling Noise of Korean Train Express Using FEM and BEM (FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측)

  • 김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

Effect of Mn Addition on Rolling Contact Fatigue of C-Base Induction Hardened Bearing Steels (C계 유도경화 베어링강의 회전접촉 피로거동에 미치는 Mn 첨가의 영향)

  • Jung, Kyung-Jo;Yoon, Kee-Bong;Choi, Byung-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 1995
  • Effect of Mn addition on rolling contact fatigue of C-base induction hardened bearing steels has been investigated to develop inexpensive surface-hardened bearing steels with improved resistance to rolling contact fatigue. Fatigue tests were conducted in elasto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max. Hertzian stress of $492kg/mm^2$. It was found in the C-Mn steels that effective depth of induction hardened layer and amount of retained austenite were slightly increased in comparison with those of C-base steels. finer interlamellar spacing of pearlite in the C-Mn steels was also observed using TEM. Decomposition of retained austenite during rolling contact fatigue was smaller in quantity in the C-Mn steels than C-base steels. This might be associated with enhanced mechanical stability of retained austenite with addition of Mn. Statistical analysis of fatigue life for C-Mn steels using Weibull distribution indicated that improved resistance to rolling contact fatigue was mainly attributed to transformation induced plasticity and mechanical stability of retained austenite.

  • PDF

Fatigue Life Analysis of Rolling Contact Model Considering Stress Gradient Effect (응력 구배 효과를 고려한 구름 접촉 모델의 피로수명해석)

  • Cho, InJe;Yu, YongHun;Lee, Bora;Cho, YongJoo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.272-280
    • /
    • 2015
  • Recently, Luu suggested fatigue life equation that uses every term of the Crossland equation with stress gradient effect. Luu’s model, however, has a limit of being unable to coverage small radii that are less than a specified length. Furthermore, rolling model has a very small contact area compared to the rolling element size, and fatigue failure occurs on the small radius such as surface asperity by cyclic loading. Therefore, it is necessary to modify fatigue life equation in order to enable fatigue analysis for a small radius. In this paper, the fatigue life considering a stress gradient effect in rolling contact was obtained using Luu’s modified equation. Fatigue analysis was performed to study the effect of stress gradient on the fatigue life using newly adopted equation and to compare the results with pervious models. In order to do this, a series of simulation such as surface stress analysis, subsurface stress analysis, and fatigue analysis are conducted for two rolling balls of same size that contact each other. Through such a series of processes, the fatigue life can be calculated and equation that is proposed in this paper evaluates the fatigue life in case the contact area is small.

Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet (액적의 구름저항에 대한 정접촉각 및 거칠기의 영향)

  • Cho, Won Kyoung;Cho, Sang Uk;Kim, Doo-In;Kim, Dae-Up;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, the effects of the contact angle (CA) and contact angle hyteresis (CAH) of planar and nano-patterned surfaces on rolling resistance of water droplet were studied. Based on the investigation on the CAH of water droplet on surfaces with various static wettability, it was found that the rolling resistance coefficient of water droplet is highly influenced by the surface pattern as well as CAH. The observed results suggest that the optimal surface patterns should be designed in order to minimize the rolling resistance of water droplet for the practical applications where superhydrophocitiy is required.

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

A Study on the Wear Performances of Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate under Sliding and Rolling Contacts (미끄럼 및 구름접촉하에서 Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate의 마모성는에 관한 연구)

  • 최웅수;한흥구;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • Wear performances for dibutyl 3,5-di-t-butyl 4-hydroxy benzyl phosphonate (DBP) were invesitigated using the four ball test machine under sliding and also rolling contact conditions, and compared with ZDDP. DBP showed excellent antiwear performace compared with ZDDP under severe sliding contact. Also, DBP achieved a longer fatigue life than ZDDP under rolling contact conditions. The surface of the worn balls was observed using an optical microscope, and the wear derbis generated was measured using the Particle Quantifier (PQ).

Finite Element Analysis of Contact Behavior Characteristics in LPG Filling Unit Depending on Multi-ball/Cylinder Rolling Friction Motions (LPG 충전기에서 다수 볼-실린더의 구름마찰운동에 따라 달라지는 접촉거동특성에 관한 유한요소해석)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, the contact stress and friction force between multi-balls and rolling friction contact surfaces of two cylinders have been presented using a finite element analysis. The multi-balls for a rolling friction motion may be contacted with a reciprocating mechanism of a parallel cylinder and a misaligned cylinder in a LPG filling unit. The FEM computed results indicate that SiC ceramic and SUS 304 balls show a high contact stress and friction force on the contact spot of rolling balls. But the PEEK balls show a low contact stress and friction loss due to a high flexibility of a PEEK polymer. In this study, we may recommend SiC and SUS 304 balls for high compressive loadings between a multi-ball and a cylinder contact mechanisms and PEEK balls for a low compressive force. And the misalignment between two cylinders should be restricted for a low contact stress and friction loss, especially.

  • PDF

Macroscopic Wear Characteristics of Ceramics under the Rolling Contact (구름접촉시 세라믹의 거시적 마모특성)

  • Kim, Seock-Sam;Koto, Kohji;Hokkirigawa, Kzauo
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The wear tests of ceramic materials in dry rolling contact were carried out at room temperature to investigate their macroscopic wear characteristics. Both point contact and line cootact were adapted in the wear tests of them. Ceramic materials used in these tests were silicon nitride, silicon carbide, cermet of TiN and TiC, titania, and alumina. The wear test of the bearing steel was carried out to compare to the wear test results of the ceramic materials. The results showed that the wear rate of silicon nitride was smaller than any other ceramic materials and bearing steel. In the steady wear, the wear volume of ceramic materials increases linearly with the rolling distance. It was also found from the experimental results that fracture toughness and surface roughness dominate the wear process of ceramic materials in dry rolling contact.

A Non-Cirucular Contact Arc Model for Temper Rolling

  • Y.L. Liu;Lee, W.H.;Cho, K.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.293-300
    • /
    • 1999
  • A mathematical model for the analysis of roll gap phenomena in strip temper rolling process is described. The mechanical peculiarities of temper rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation (preliminary displacement or sticking) zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The restricted deformation zone near the neutral point is also considered. The concept and the calculation method of limiting preliminary displacement are used to determine the length of the central restricted deformation zone. The comparison of the model results with the measured mill data is also made.

  • PDF