• 제목/요약/키워드: Rolling and cooling

검색결과 124건 처리시간 0.019초

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

롤링을 통한 창호부착형 에어캡 모듈 개발 (Development of the Aircap Module Attached to the Window Through Rolling)

  • 허지운;서장후;김용성;이행우
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.559-569
    • /
    • 2017
  • Various studies examining how to conserve building energy have been conducted recently. From such studies it has been determined that insulation performance of an aircap is viable and therefore aircaps are used as material for improving insulation performance of windows. However, the aircap for improving insulation performance of a window is attached on the front, causing infringement of the prospect right. Therefore, the purpose of this study is to develop an aircap module attached to the window through rolling, conducting performance verification throughfull-scale testbed and verifying its effectiveness. Findings of this study are as follow : 1) The module suggested in this study enables setting of an area wherein the aircap is attached through rolling so that the aircap rolls up using Velcro tape, and an insulation bar is suggested to block the gap between the aircap and window glass. 2) When the aircap is applied to the window, consumption of lighting energy increased during summer and winter by 2.8%~16.4% and 0%~76.2% respectively in comparison to no aircap application, indicating that it is unsuitable for conserving lighting energy. 3) In terms of conserving cooling and heating energy, an advantageous or effective aircap attachment method is the method whereby an aircap is attached to the front surface of a window. However, the method whereby an aircap is attached to a part of a window and where no aircap is attached increases consumption of cooling and heating energy during summer and winter by 6.0%~35.7% and 2.7%~41.6% respectively in comparison to the method wherein an aircap is attached to the front surface of a window. 4) In consideration of conserving cooling, heating and lighting energy, the attachment of an aircap to the front surface of window is the most appropriate method, and it is appropriate to attach the aircap at a position that is 1,500 mm or higher from the floor to secure the prospect right and minimize energy loss.

2.25% Cr-1%Mo 합금계 열연강판 제조기술 (Manufacturing 2.25Cr-1Mo Steel In Hot Rolling Strip Mill)

  • 노태훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.390-398
    • /
    • 1999
  • The thermomechanical control process(in hot rolling strip mill) was employed to produce 2.25Cr-1Mo steel, which is to be construction material for the steam generator for power plant. Although the Conventional processes has been the primary means of producing the 2.25Cr-1Mo steel, an alternative method was used to meet the specification of ASTM heat treatment for A387-22-Classl using autotempering after coiling in hot rolling strip mill. The microstructures, tensile properties at various temperatures, and creep-rupture properties have been investigated to compare the properties with those of materials produced by the conventional process and to certify the application of the thermomechanical control process to an actual process of manufacturing 2.25-Cr-1Mo steel, this in turn, will reduce the cost of the process. About 14 to 34% glanular bainite (remainder proetectoid ferrite) formed in a coil, and this variety of volume fraction stems from the different cooling rates, which varies with position of the coil after coiling. Tensile testing from room temperature to 700$^{\circ}C$ indicated that strength increases with test temperature showing peaks at around 600$^{\circ}C$. Creep-rupture properties have been being investigated at the temperature of 500$^{\circ}C$ with 27.5, 32kg/$\textrm{mm}^2$ loads and have showed no rupture for over 1000 hours.

  • PDF

주행하는 고온 강재의 상하부 동시 냉각 과정 수치해석 (Numerical Analysis of Simultaneous Cooling Process of Upper and Lower Side of Running Hot Steel Strip)

  • 권면재;박일석
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.1051-1056
    • /
    • 2014
  • 열간 압연을 거친 $800^{\circ}C$ 이상의 고온 철강 판재는 일반적으로 다중 봉상 수분류(multiple circular water jets)에 의해서 급속 냉각된다. 이 과정은 소재의 온도가 냉각수의 끓는점보다 훨씬 높기 때문에 소재 표면과 냉각수 사이에 막비등 열전달 현상이 발생하며 소재 표면에 매우 얇은 증기층이 형성되며, 이 증기층은 소재와 냉각수의 열교환을 방해하는 중요한 열저항으로 작용한다. 본 문제에는 비등 열전달 이외에도 소재 표면에 쌓이는 체류수의 자유표면 유동, 소재의 고속 주행 등 복잡한 물리현상들이 복합적으로 작용하고 있다. 본 논문에서는 이 모든 물리현상들을 동시에 고려할 수 있는 해석 절차를 적용하여 일정한 속도로 주행하는 고온 철강 판재의 상하부 동시 냉각 과정을 3 차원 수치해석 하였으며, 소재 상부 및 하부 면의 냉각 특성을 비교하였다.

일체형 로타리 압축기-베인 팽창기 (A Combined Rotary Compressor-vane Expander)

  • 김현진;노영재;김용희
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.12-19
    • /
    • 2015
  • As a means of improving cycle performance of a R410A air-conditioning system, a combined structure of compressor and expander was introduced. A vane rotary type expander was designed to share a common shaft with twin type rolling piston rotary compressor in a housing. Numerical simulation on the performance of the combined compressor and expander was carried out. At ARI condition, the volumetric and total efficiencies of the designed vane expander were 69.37% and 30.23%, respectively. With the application of this expander, the compressor input was reduced by 3.91%, and the cooling capacity was increased by 3.98%. As a result, COP of the air-conditioning system was improved by 8.2%. As the pressure difference between the condenser and the evaporator becomes large, COP improvement increases unless the mass flow rate in the expander exceeds that in the compressor.

소형 고속 구름베어링의 연료윤활 특성 연구 (Study on Fuel Lubrication Performance of a High Speed Rolling Element Bearing)

  • 김기태;김성균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.424-426
    • /
    • 2008
  • 초소형 가스터빈에 사용되는 소형 고속 구름베어링의 연료윤활 특성을 실험적으로 조사하였다. 윤활유로는 항공용 가스터빈에서 사용되는 MIL-PRF-7808 터빈오일과 항공용 가스터빈의 추진연료로 사용되는 JP-8 연료를 사용하여 운용특성을 비교하였고, 시험용 베어링으로는 내경 17 mm의 깊은 홈(deep groove) ball bearing과 내경 20 mm의 원통형(cylindrical) roller bearing을 사용하였다. 베어링의 연료윤활에 따른 특성을 비교하기 위하여 오일 및 연료를 공급하며 고속베어링 시험을 수행할 수 있는 시험 장치를 개발하여 하중, 냉각공기 온도, 윤활유량 및 회전속도를 변화시키면서 시험을 수행하였다. 30,000 rpm에서 70,000 rpm까지 회전속도를 변화시키면서 시험한 결과 깊은 홈 볼베어링은 축하중과 회전속도가 증가하는 경우 베어링 케이지에 마모가 발생하였으며 마모상태는 오일윤활보다 연료윤활시 마모가 더 많이 발생하였고 본 베어링의 속도한계인 59,000 rpm까지는 연료 윤활로 운용이 가능하다는 것을 확인할 수 있었다. 연료윤활의 경우가 오일윤활의 경우보다 베어링 온도가 더 낮은 것을 알 수 있었는데 이는 베어링의 냉각특성이 연료윤활인 경우가 오일윤활의 경우보다 더 좋기 때문이라 판단된다. 본 실험을 통하여 소형 항공용 가스터빈의 주축 베어링 윤활방식으로 연료윤활 방식이 적용 가능함을 확인할 수 있었다.

  • PDF

중탄소계 열간단조품의 미세조직과 구름피로거동 (Rolling Contact Fatigue Behavior and Microstructure Control to Medium Carbon Steel Base Hot Forgings)

  • 이재성;손찬현;문호근;송복한;박창남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.287-290
    • /
    • 2005
  • Once hot forgings for automotive parts such as wheel bearing flange to which cyclic asymmetric bending stress is continuously applied are produced, it is necessary to control their microstructure to obtain superior mechanical properties. It is however hard to control the microstructure uniformly because the strength is reduced as coarsening of ferrite grains. To investigate the microstructural alteration according to process variables during hot working, the variation of the ferrite grain size was studied by utilizing of the computer aided servo-hydraulic Gleeble tester which is hot deformation behavior reproduction equipment. In addition, the effect of the ferrite grain size of raw material on the austenite grain behavior of hot forgings was also examined. The rolling contact fatigue resistance of the induction hardened SAE 1055 steel was compared with the occasion of the same condition of SAE52100 bearing steel. As a result, it was confirmed that the ferrite grain sizes of the forgings depend on the heating temperature and cooling start temperature during hot forging and cooling processes. The induction hardened SAE1055 steel showed a superior rolling contact fatigue resistance to the induction hardened SAE52100 steel. The reason is that SAE1055 steel is freer from the material defect such as segregation than the comparative steel.

  • PDF

항공용 고속 롤러베어링의 냉각 방식에 따른 작동간극 변화 (Variation of Operating Clearance Depending on Cooling Methods of High-Speed Roller Bearings for Aerospace Applications)

  • 박지수
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.123-132
    • /
    • 2023
  • In this study, the expansion, stress, and operating clearance of bearing elements during operation are observed using the inner/outer ring temperature test data of a 3.0×106 DN-class roller bearing. The operating clearance characteristics of inner-/outer-ring cooling (IORC) bearings are compared to those of inner-ring cooling (IRC) bearings. For IRC bearings, the thermal expansion of the outer ring is the most important factor in clearance variation. As a result, the operating clearance is less than the initial clearance of 61 ㎛, and the operating clearance decreases to 0.5 ㎛ at 25,500 rpm. Conversely, the temperature of the outer ring of IORC bearings is lower than that of IRC bearings, so the operating clearance is kept smaller. When the coolant flow rate to the outer ring is approximately 1.5 to 2.0 L/min, the temperature difference between the inner and outer rings is minimized and the operating clearance is maintained at a significantly lower level than IRC bearings. Small operating clearances are expected to be effective in reducing cage slip and skid damage in roller bearings. The results and analysis procedures of this study can be utilized to design of bearing clearance, lubricant flow rate, and assembled interference in the early design stage of aerospace roller bearings.

MICROSTRUCTURAL EVOLUTION OF A HIGH CR FE-BASED ODS ALLOY BY DIFFERENT COOLING RATES

  • Shen, Yin-Zhong;Cho, Hae-Dong;Jang, Jin-Sung
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.99-106
    • /
    • 2008
  • Through mechanical alloying, hot isostatic pressing and hot rolling, a 9%Cr Fe-based oxide dispersion-strengthened alloy sample was fabricated. The tensile strength of the alloy is significantly improved when the microstructure is modified during the post-consolidation process. The alloy samples were strengthened as the cooling rates increased, though the elongation was somewhat reduced. With a cooling rate of $800^{\circ}C/s$ after normalization at $1150^{\circ}C$, the alloy sample showed a tensile strength of 1450 MPa, which is about twice that of the hot rolled sample; however, at $600^{\circ}C$ the tensile strength dramatically decreased to 620 MPa. Optical microscope and transmission electron microscope were used to investigate the microstructural changes of the specimens. The resultant strengthening of the alloy sample could be mainly attributed to the interstitially dissolved nitrogen, the fraction of the tempered martensite, the fine grain and the presence of a smaller precipitate. The decrease in the tensile strength was mainly caused by the precipitation of vanadium-rich nitride.

휴대용 냉동기 적용을 위한 소형 냉동컴프레서 개발 및 기본 성능에 관한 연구 (Development of a Compact Refrigeration Compressor and the Study of Basic Performance for Portable Refrigerator)

  • 장준영;김영준;남연우
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.385-390
    • /
    • 2012
  • This paper discusses the applicability of a compact rolling piston refrigeration compressor to portable refrigerators. The capacity of this compressor is 1 cc. Using a 12 V BLDC motor, the compressor is driven from 2500 rpm to 6000 rpm. The height of the compression module and motor is approximately 56 mm, and their weight is approximately 374 g. We confirmed the effective operation of the compressor components by evaluating their compression and cooling performance.