• Title/Summary/Keyword: Rolling Times

Search Result 187, Processing Time 0.038 seconds

Microstructure and Mechanical Properties of AA6061/AA5052/AA6061 Complex Sheet Fabricated by Cold-Roll Bonding Process (냉간압연접합법에 의해 제조된 AA6061/AA5052/AA6061 복합판재의 미세조직 및 기계적 성질)

  • Hwang, Ju-Yeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.392-397
    • /
    • 2019
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.

Effects of Alloying Elements on Sticking Occurring During Hot Rolling of Ferritic Stainless Steels (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking에 미치는 합금원소의 효과)

  • Ha, Dae Jin;Kim, Yong Jin;Lee, Jong Seog;Lee, Yong Deuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.593-603
    • /
    • 2008
  • In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content.

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

A Rolling Sampling Design for the Korea National Health and Nutrition Examination Survey (제4기 국민건강.영양조사를 위한 순환표본 설계연구)

  • Lee, Kay-O;Park, Jin-Woo
    • Survey Research
    • /
    • v.8 no.2
    • /
    • pp.67-89
    • /
    • 2007
  • The Korea National Health and Nutrition Examination Survey(KNHANES) consists of Health Interview Survey, Health Behaviour Survey, Nutrition Survey, and Health Examination, and is designed to produce a broad range of descriptive health and nutritional statistics for sex and age subdomains of the population. These data can be used to measure and monitor the health and nutritional status of the population of Korea. The survey has been conducted three times from 1998. The Korea Centers for Disease Control and Prevention(KCDC) is preparing for the 4th survey which is to be conducted from 2007 through 2009. This study is to design a sample for the 4th survey. The main new feature of the sampling design is using a rolling sampling design method. Since KCDC has imposed some operational requirements, e,g., the needs of producing the annual national statistics and of year-round data collection by some regular staffs, a rolling sampling design method is introduced. This is the first time in history of applying a rolling sampling design for a national-wide large scale survey in Korea. Bringing in the rolling sampling, measurement variation due to different data collectors may be minimized.

  • PDF

A Study on Impact Testing of a Rolling-stock Windscreen (철도차량 전면창유리 충격시험에 관한 연구)

  • Jeon, Hong Kyu;Park, Chan Kyoung;Seo, Jung Won;Jeon, Chang Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2013
  • This study describes impact test methods for a rolling-stock windscreen executed in Korea and Europe. Air-pressurized impact test equipment for the front windscreens of high speed trains was designed and manufactured. The equipment is capable of launching a projectile at 500km/h, in accordance with EN 15152's impact test method. Calibration of the test equipment was conducted to find an equation relating air pressure and projectile velocity. Specimens ($1000mm{\times}700mm$) having similar specifications with the front windscreens in metro and conventional trains were used to conduct impact tests with this equipment to research the impact characteristics of the screens according to the impact velocity.

Development of Estimation Methods of Pollutant Emissions from Railroad Diesel Rolling Stocks (철도디젤차량에서 배출되는 오염물질의 배출량 산정방법 개발)

  • 박덕신;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.539-553
    • /
    • 2004
  • Up to the present time, many methods to estimate emissions from a particular diesel engines have wholly depended on the quantity of diesel fuel consumed. Then, the recommended emission factors were normalized by fuel consumption, and further total activity was estimated by the total fuel consumed. One of main purposes in the study is newly to develop emission factors for the railroad diesel rolling stock (RDRS) and to estimate a total amount of major gaseous pollutants from the RDRS in Korea. Prior to develop a Korean mode emission factor. the emission factor from the USEPA was simply applied for comparative studies. When applying the USEPA emission factors, total exhaust emissions from the RDRS in Korea were estimated by 28,117tons of NOx, 2,832.3tons of CO, and 1,237.5tons of HC, etc in 2001. In this study, a emission factor for the RDRS, so called the KoRail mode (the Korean Railroad mode) has been developed on the basis of analyzing the driving pattern of the Gyeongbu-Line especially for the line-haul mode. Explicitly to make the site specific emission factors, many uncertainty problems concerning weighting factors for each power mode, limited emission test, incomplete data for RDRS, and other important input parameters were extensively examined. Total exhaust emissions by KoRail mode in Korea were estimated by 10,960tons of NOx, and 4,622tons of CO, and so on in the year of 2001. The emissions estimated by the USEPA mode were 2.6 times higher for NOx, and 1.6 times lower for CO than those by the KoRail mode. As a conclusion, based on the emission calculated from both the USEPA mode and the KoRail mode, the RDRS is considered as one of the significant mobile sources for major gaseous pollutants and thus management plans an(1 control strategies for the RDRS must be established to improve air quality near future in Korea.

A study on crash energy absorption design of passenger-car extreme structure of tilting train prototype (한국형 고속틸팅열차의 중간부 충돌에너지 흡수구조에 대한 연구)

  • Kwon T.S.;Jung H.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.326-330
    • /
    • 2005
  • Crahworthy design of trains is now indispensable procedure in modern railway vehicle design for ensuring the safety of passengers and crew. It is now widely recognized that a more strategic approach is needed in order to absorb higher level energy in a controlled manner and minimize passenger injuries effectively. The first design step in this strategic approach is the design of the front end structure(so called HE extremities) to absorb a large part of total impact energy and then the structure of passengers non-accommodation zones(so called HE extremities) is designed to absorb the rest of impact energy. In this paper, the passengers entrance door area is selected as the LE(low energy) extremities and the design of the LEE was carried out. The main part of LEE design procedures is the design of energy absorbing tubes. For this purpose, the several tube candidates are introduced and compared to each others with numerical crash simulation.

  • PDF

Mechanical Characteristics of Nano-Structured Tool Steel by Ultrasonic Cold Forging Technology

  • Suh, Chang-Min;Song, Gil-Ho;Suh, Min-Soo;Pyoun, Young-Shik;Kim, Min-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.35-40
    • /
    • 2006
  • Ultrasonic cold forging technology (UCFT) utilizing ultrasonic vibration energy is a method to induce severe plastic deformation to a material surface, therefore the structure of the material surface becomes a nano-crystal structure from the surface to a certain depth. It improves the mechanical properties; hardness, compressive residual stress, wear and fatigue characteristics. Applying UCFT to a rolling process in the steel industry is introduced in this study. First, the UCFT specimens of a tool steel (SKD-61/equivalent H13) are prepared and tested to verify the effects of the UCFT in a variety of mechanical properties, the UCFT is applied to the trimming knives in a cold rolling process. It has been determined that UCFT improves the mechanical properties effectively and becomes a practical method to improve productivity and reliability by about two times compared with the conventionally treated tooling in the trimming process in a cold rolling line.

  • PDF

Experimental Study on the Period Control of an U-tube Type Anti-Rolling Tank by using a Double Layer Duct (이중덕트를 이용한 U자형 감요수조의 주기조절 실험 연구)

  • Ju, Youngkwang;Kim, Yong Jig;Ha, Youngrok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The Anti-Rolling Tank(ART) has an advantage over the other roll stabilizing devices, when ship is staying and working at one site of sea. An important design point of ART is the tank tuning, that is, matching the tank natural period to the ship's roll natural period. Since the load condition and consequently the roll natural period of ship is to be changed widely, the natural period of ART also has to be changed widely. In case of the existing U-tube type ART with a single layer duct, the tank natural period can be changed in a relatively narrow range. This paper suggests a new U-tube type ART system using a double layer duct to enable wide change of ART natural period. Through the roll experiments performed in regular beam waves for a box-type model ship, it is shown that the double layer duct ART has about two times wider period range and a better reducing effect of roll magnitude than the single layer duct ART.

The Trial Manufacture of the Grain-Oriented Ultra-Thin Silicon Steel Ribbon using Hot-Rolled Plate (열연판을 사용한 방향성 박규소강대의 제작)

  • 강희우
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • We investigated to DC magnetic characteristics, the dependence of annealing temperature on the crystal grain and the crystalline orientation for grain-oriented silicon ribbon with 100 $\mu\textrm{m}$ final thickness manufactured by three times cold rolling method using the hot-rolled silicon steel plate as a raw material. The growth of (110)[001] Goss texture were almost observed in the whole area of the sample. The values of the saturation magnetic flux density B$\sub$s/ and the average ${\alpha}$ angle have 1.9 T and 4.6 degrees respectively. From this result we could be confirmed that the three times cold rolling method has a possibility of manufacture for oriented ultra-thin silicon ribbons much more simple and cheeper than the existing oriented silicon steel manufacturing method by means of more simplified producing process.

  • PDF