• Title/Summary/Keyword: Rolling Motion

Search Result 286, Processing Time 0.022 seconds

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect (콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구)

  • Seo, Dae-Won;Lee, Se-Jin;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • A ship operating in rough sea may suffer from an undesirable motion which may severely degrade the performance of equipment onboard and give a person an uncomfortable feeling. Hence, roll stabilization received a considerable attention and various devices including bilge keels, stabilizing fins, gyroscopic, anti-rolling tanks, rudders and flaps have been conceived and utilized for the purpose. The Coanda effect is evident when a jet stream is applied tangential to a curved surface of a hydrofoil since then the jet increases the circulation around the foil and consequently the lift. Model tests and numerical simulation have been conducted to examine the practicality of a fixed type fin stabilizer augmented by the Coanda jet. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack identically coincides with that of the original fin at ${\alpha}=\26^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.25. It is also shown that fixed type fin stabilizers for active control of the motions of ships and the other mobile units without rotation can be put to practical use if the Coanda effect is applied.

Electromagnetic Flapping Shutters for Phone Cameras (폰 카메라용 전자기력 Flapping 셔터)

  • Choi, Hyun-Young;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1385-1391
    • /
    • 2010
  • In this study, we present small-size, low-power, and high-speed electromagnetic flapping shutters for phone cameras. These shutters are composed of trapezoidal twin blades suspended by H-type torsional springs. The existing electrostatic rolling and flapping shutters need high input voltage, while the existing electromagnetic rotating shutters are too big to be used for phone cameras. To achieve low-power and high-speed angle motion for small-size electromagnetic flapping shutters for camera phones, low-inertia trapezoidal twin blades, each suspended by the low-stiffness H-type torsional springs, are employed. The electromagnetic flapping shutters used in this experimental study have steady-state rotational angles of $48.8{\pm}1.4^{\circ}$ and $64.4{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively, for an input current of 60 mA; the maximum overshoot angles are $80.2{\pm}3.5^{\circ}$ and $90.0{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively. The rising/settling times of the shutter while opening are 1.0 ms/20.0 ms, while those while closing are 1.7 ms/10.3 ms. Thus, we experimentally demonstrated that the smallsize (${\sim}8{\times}8{\times}2\;mm^3$), low-power (${\leq}60\;mA$), and high-speed (~1/370 s) electromagnetic flapping shutters are suitable for phone cameras.

A Study on Reducing Vibration of Oil-Free Reciprocating Air Compressors (오일프리 왕복동식 공기압축기 진동저감을 위한 방안 연구)

  • Song, Min-Su;Park, Eun-Suk;Hwang, Sung-Wook;Oh, Seok-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.656-662
    • /
    • 2011
  • Recently, rolling stock technology has rapidly developed. Nevertheless, ride quality and vibration vibration on vehicle still need more study. EMU to be operated on SMRT Line 7(SR001) extension section is applied to oil-free reciprocating air compressor considering maintainability and convenience of inspection. But reciprocating air compressor compresses the air by back-and-forth motion of piston, and spreads the vibration to surrounding structures by its force of inertia. Optimum design of mounting bracket is able to reduce the vibration. As a result, we analyzed the frequency spectrum on vibration upon value by measuring vibration during operation of air compressor. On this study, we comprehend the vibration transmission process of reciprocating air compressor and consider the measure for reducing vibration by minimizing propagation of vibration.

  • PDF

Performance Evaluation of Hydrostatic Bearing Guided Rotary Table for Large Volume Multi-tasking Vertical Lathe (대형 복합수직선반 가공기용 유정압베어링 회전테이블 성능 실험 및 분석)

  • Shim, Jongyoup;Oh, Jeong-Seok;Park, Chun-Hong;Shin, Heung-Chul;Park, Woo-Sang;Kim, Min-Jae;Kim, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.635-642
    • /
    • 2014
  • The large volume multi-tasking vertical lathe was developed for machining the bearing parts for a wind power generator. Although the machined part is large in size high precision tolerances are required recently. One of the most important components to achieve this mission is the rotating table which holds and supports the part to be machined. The oil hydrostatic bearing is adopted for the thrust bearing and the rolling bearing for the radial bearing. In this article experimental performance evaluation and its analysis results are presented. The rotational accuracy of the table is assessed and the frequency domain analysis for the structural loop is performed. And in order to evaluate the structural characteristic of table the moment load experiment is performed. The rotational error motion is measured as below 10 ${\mu}m$ for the radial and axial direction and 22,800 Nm/arcsec of moment stiffness is achieved for the rotary table.

Multi-body Dynamic Analysis for Tripod Constant Velocity Joint (트라이포드 타입 등속조인트의 다물체 동역학 해석)

  • Song, Myung-Eui;Lim, Young-Hun;Cho, Hui-Je;Bae, Dae-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The paper proposes a multi-body dynamic simulation to numerically evaluate the generated axial force(G.A.F) and plunging resistant force(P.R.F) practically related to the shudder and idling vibration of an automobile. A numerical analysis of two plunging types of CV joints, tripod joint(TJ) and very low axial tripod joint(VTJ), is conducted using the commercial program DAFUL. User-defined subroutines of a friction model illustrating the contacted parts of the outboard and inboard joint are subsequently developed to overcome the numerical instability and improve the solution performance. The Coulomb friction effect is applied to describe the contact models of the lubricated parts in the rolling and sliding mechanisms. The numerical results, in accordance with the joint articulation angle variation, are validated with experimentation. The offset between spider and tulip housing is demonstrated to be the critical role in producing the 3rd order component of the axial force that potentially causes the noise and vibration in vehicle. The VTJ shows an excellent behavior for the shudder when compared with TJ. In addition, a flexible nonlinear contact analysis coupled with rigid multi-body dynamics is also performed to show the dynamic strength characteristics of the rollers, housing, and spider.

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies (차체의 유연성을 고려한 고속철도 차량 승차감 해석)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Koo, Ja-Choon;Lee, Sang-Won;Lee, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • In the development of high-speed trains, ride comfort is an important factor that determines the quality of the train. In this study, the ride comforts of high-speed trains with rigid and flexible car bodies were evaluated. The rail irregularity is used as an exciting source of the car-body bounce motion. The complex extruded structures of the car-body are modeled as shell structures using the calculated equivalent stiffness of the flexible model. The numerical results show that the ride of the rigid-body model improves as the speed increases, which is unreasonable. In contrast, the relationship between ride comfort and speed in the case of flexible-body model is reasonable. Thus, it is confirmed that the flexibility of the car body needs to be taken into consideration while fabricating a high-speed train.

Contact Surface Fatigue Life for RPG System (RPG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kwon, Soon-Man;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1453-1459
    • /
    • 2011
  • A roller pinion gear (RPG) system composed of either a pin or a roller and its conjugated cam gear can improve the gear endurance from that of a conventional gear system by reducing the sliding contact while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection condition obtained when the profile shift coefficient is introduced. Then, we investigated the Hertzian contact stresses and the load stress factors while the varying the shape design parameters to predict the gear surface fatigue life, which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.