• Title/Summary/Keyword: Rolling Contact

Search Result 392, Processing Time 0.033 seconds

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

An Experimental Study on the Rail Wear Reduction Using Coating Material in Curved Track (레일코팅재를 이용한 곡선부 레일마모저감에 관한 실험적 연구)

  • Ha, Beom-Yong;Park, Yong-Gul;Lee, Dong-Wook;Choi, Jung-Youl;Kang, Yun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2153-2162
    • /
    • 2011
  • The goal of this Paper is to reduce rail's wear in curved track by applying an additional surface layer material(High hardness and High resistance capacity of wear) on the top of the railhead. In order to evaluate appropriation of a coating material, experimental tests such as the varieties of fundamental properties tests (hardening, wear, tensile, and bending) and RCF(rolling contact fatigue)test were performed to establish fatigue wear and damage mechanism. As a result, wear performance of coating rail is better than heated rail about 6times and normal rail about 8~9times.

  • PDF

Natural Resolution of DOF Redundancy in Execution of Robot Tasks;Stability on a Constraint Manifold

  • Arimoto, S.;Hashiguchi, H.;Bae, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • In order to enhance dexterity in execution of robot tasks, a redundant number of degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-fingered robot hands. Associated with such redundancy in the number of DOFs relative to the number of physical variables necessary and sufficient for description of a given task, an extra performance index is introduced for controlling such a redundant robot in order to avoid arising of an ill-posed problem of inverse kinematics from the task space to the joint space. This paper shows that such an ill-posedness of DOF redundancy can be resolved in a natural way by using a novel concept named “stability on a manifold”. To show this, two illustrative robot tasks 1) robotic handwriting and 2) control of an object posture via rolling contact by a multi-DOF finger are analyzed in details.

  • PDF

Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (I) (프로파일링을 한 원통형 로울러의 탄성유체윤활 (I))

  • 박태조;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.262-270
    • /
    • 1988
  • A numerical solution of the elastohydrodynamic lubrication problem for an axially profiled cylindrical roller is presented. The problem is analyzed using finite difference method and Newton-Raphson method. The effect of side leakage and compressibility of lubricants are considered and axially nonuniform grid is constructed over the computation zone. Isobars, contours and section graphs show pressure variation and film shape. Contours plot is very similar to the previously reported experimental observations based upon optical interferometry. The maximum pressure and the minimum film thickness occur near the start of the profiling. The method used makes it possible to design an optimum axial profile of the roller to increase the life of rolling bearings.

냉연 강판의 폭방향 판두께 제어 기술

  • 배원형;박해두;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.512-517
    • /
    • 1993
  • The cold rolled strip meets continuously rising demands on the less deviation of thickness at the width direction of their rolled products. Especially, the special interest has been to find the methods to reduce the edge drop which influences seriously on the yield losses and the quality of the rolled products. In this study, the influence of hot coils on the thickness profile of cold rolled strip was analyzed. For obtainint the tapered work roll shig\ft conditions, the thermal crown and the flattening between the work roll and the strip were calculated, and the main parameters which have mostly effects on the edge drop were simulated. Also the obtained conditions from the simulation were applied to Tandem Cold Rolling Mill to investigate the change of the edge drop and the crown ratio depending on the amount of work roll taper and the length of contact of taper. The results of the application led to better thickness profile than conventional one.

  • PDF

A Study on the Stress and Displacement Behaviors of an aluminum Tube in OPC Toner Cartridge (토너카트리지 OPC 드럼용 Al 튜브의 응력 및 변형거동에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.89-94
    • /
    • 2007
  • The stress and displacement behavior analysis of an aluminum tube for an organic photo conductor drum has been presented using a finite element analysis technique by non-linear FEM program. The maximum displacement in the radial direction of OPC drum may directly affect to the quality of printed matter. Thus, the deformed profile of the aluminum tubes should be limited depending on the toner powder size and the contact rolling forces between an OPC drum and a paper. This paper recommends the critical loading of 400 Pa for the provided toner size, $8{\mu}m$ for excellent printed matters and long life of the toner cartridge.

A Study on the Ride Improvement of an Escalator Using Flexible Body Dynamics Model (유연체 동력학모델을 이용한 에스컬레이터의 승차감 개선에 관한 연구)

  • 박찬종;권이석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.135-142
    • /
    • 2000
  • In this paper, 3-dimensional numerical model of an escalator is developed to study the vibration characteristics. This proposed model is able to consider the elastic deformation of the frame during transient dynamic analysis. Deformation modes which are used to calculate the elastic deformation are selected from the FE model analysis. Because low frequency vibration is very important to the ride quality of fore/aft direction, low frequency deformation modes of the frame below 20Hz are considered. To show validity of this dynamics model, longitudinal acceleration of a step is compared with test data in frequency domain. Then robust design technique is applied to determine important design factors and improve ride quality with small number of experiments.

  • PDF

Design of Elliptical Gears for Wire Cutting (타원형 기어의 와이어커팅을 위한 설계)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.149-155
    • /
    • 2007
  • The CAD model of a elliptical gear for wire cutting has been developed. The rolling contact of pitch ellipses whose rotation axes coincide with their focus has been analyzed, and the perimeter of the pitch ellipse has been divided into equal-length segments by the number of teeth. A master tooth profile, which is a composite curve of circular arcs that represents involute, has been introduced. The elliptical gear has been designed by imposing the master tooth on the divided points of the pitch ellipse, and a full fillet has been achieved between neighbour teeth. Thus, the whole profile of an elliptical gear is a composite curve of arcs only, and consequently NC codes for wire cutting can be easily generated. Furthermore, a computer simulation program is developed to verify the mesh of the elliptical gear.

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF