• 제목/요약/키워드: Roll-to-roll Mechanism

검색결과 112건 처리시간 0.028초

Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로- (A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System)

  • 한성욱;정영진;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

3차원 2진 로봇 머니퓰레이터의 역기구학적 해석 (Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator)

  • 류길하;이인석
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구 (A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK)

  • 정성기;정재홍;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

대퇴 절단자들을 위한 로봇 의지의 설계 (Design of Robotic Prosthetic Leg for Above-knee Amputees)

  • 양운제;김정엽
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Mechanical Properties and Microstructures in WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.50-56
    • /
    • 2003
  • Metal matrix composites(MMC) consist of metal matrix into which is distributed a second solid phase. The normal intension is to develop a material with superior mechanical properties (for example increased toughness, stiffness and wear resistance) compared to those inherent in the matrix component. In this study, WC-12%Co/low carbon steel MMC overlays have been prepared by Gas Metal Arc Welding(GMAW) according to feeding rate of WC-12%Co grit. The macro and microstructures were examined using optical microscopy (OM) and scanning electron microscopy(SEM) each other. The characteristics of hardness and wear resistance have been investigated. WC-12%Co/low carbon steel MMC overlays which have been taken good beads without porosity and cracks were manufactured by method of GMAW. Matrix of overlayed surface was seen as fish bone and faceted dendrite structures. It was known that structures were iron tungsten carbides, Fe$_{6}$W$_{6}$C which have been occurred by melting of WC-12%Co grits. After MMC had been tested by block-roll wear test it was known that WC-12%Co/low carbon steel MMC has a excellent wear resistance by exiting Fe6w6c and WC-12%Co grit. The consequence was that region of overlay with Fe$_{6}$W$_{6}$C phase has been showed a model of adhesive wear, but region of overlay with WC-12%Co grit was restrained as a result of mechanism that wear of WC-12%Co grit is not adhesive but fracture.racture.

유한 차분법에 의한 Thin Slab 고속 연속주조의 동적벌징 거동해석 (Dynamic Bulging Behavior Analysis by Finite Difference Method in High Speed Continuous Casting of Thin Slab)

  • 정영진;신건;조기현;강충길
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1650-1660
    • /
    • 2000
  • Continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, rep lacing the conventional route of ingot casting and rolling. In order to achieve this merit, however, more studies about the mechanism between roll and slab are needed. In this paper, a dynamic bulging in steel cast slabs was simulated by considering the solidification and heat transfer. This study is to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under the ferrostatic pressure and slab-self weight has been calculated in terms of creep and elasto-plasticity. The strain and strain rate distributions in solidified shell undergoing a series of bulging are calculated with working boundary conditions.

비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사 (Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame)

  • 이창언;오창보
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

반디호 수출형 시제기에 대한 플러터 매커니즘 분석 (Flutter Mechanism Analysis for Firefly Export Model)

  • 백승길;이상욱
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.35-44
    • /
    • 2007
  • 본 연구에서는 선미익을 채용한 경항공기인 반디호의 수출형 시제기에 대한 플러터 해석을 수행하였다. 내부 하중 생성용 유한요소모델을 기초로 강성 모델을 작성하였고, 중량 통제를 위한 중량 DB에 근거하여 중량 모델을 작성하였다. 공력모델은 DLM을 이용하였다. 작성된 모델을 이용하여 1차 플러터 해석을 수행하였다. 이를 토대로 주요 진동 모드를 구분해 내고, 지상진동시험을 수행하여 진동 특성을 획득하였다. 획득된 고유진동수를 근거로 유한요소모델의 수정이 이루어졌고 2차 해석이 수행되었다. 해석 결과 주요 플러터 근의 특성을 정리하였다. 가장 중요한 플러터 근은 롤 운동을 갖는 강체 모드와 반대칭 주익 피칭 모드의 연계 모드로 판명되었다.

  • PDF

항공 정찰용 Step-stare 영상획득 시스템 설계 (Design of the Step-stare Image Gathering System for an Aerial Reconnaissance)

  • 백운혁;박재영;안정훈;이정석
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.813-820
    • /
    • 2014
  • This paper presents design and performance validation of a method for motion compensation using fast steering mirror. First of all, the schematics of the Electro Optical/Infra-Red (EO/IR) and step-stare image gathering system for an aerial reconnaissance are introduced. Because of the steering mirror with low inertia so called Back scan mechanism (BSM), the fast step-stare image gathering technique that is required for taking a high-definition still image will be realized. After then, the BSM hardware includes motors and feedback sensors are introduced. Also, the motion profile for BSM will be designed to compensate roll scan motion of the gimbals. At the end of this paper, designed profile and tracking performance of the EO/IR system with BSM will be validated through experiments.