• Title/Summary/Keyword: Roll-to-Roll systems

Search Result 385, Processing Time 0.027 seconds

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

Autopilot design for BTT flight vehicles (이동중인 비행시스템의 자동조종장치 설계)

  • 백운보;허남수;이만형;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.87-92
    • /
    • 1989
  • An autopilot for the class of Bank-To-Turn missiles is developed using a multivariable plant model & control design methodology. The roll-pitch-yaw cross coupling is included in the design considerations. Feedback system is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR). Nonlinear simulations are presented to demonstrate the performances of the designed system.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Balancing and Driving Control of a Bicycle Robot (자전거로봇의 균형제어 및 주행)

  • Lee, Suk-In;Lee, In-Wook;Kim, Min-Sung;He, He;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.532-539
    • /
    • 2012
  • This paper proposes a balancing and driving control system for a bicycle robot. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. For the driving control, PID control algorithm with a variable gain adjustment has been developed in this paper, where the gains are heuristically adjusted during the experiments. To measure the angles of the wheels the encoders are used. For the balancing control, a roll controller is designed with a non-model based algorithm to make the shortest cycle. The tilt angle is measured by the fusion of the acceleration and gyroscope sensors, which is used to generate the control input of the roll controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed bicycle robot.

Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body (프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

A Study on the Anti-Rolling Systems for Vessels (선박용 감요장치에 대한 고찰)

  • Kwon, Sun-Young;Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.167-178
    • /
    • 1997
  • It has been expected not only for crew but also for passengers to realize a ship whose rolling and other motions are small as much as possible. Restricting our consideration to the roll reduction, the conventional roll stabilization system, fins or anti-rolling tanks hve been utiized as the actuator. Excessive motions would interfere with the recreational activities of passengers on a cruise ship. Often more than half of the load of a containership is stowed above deck where it is subjected to large acclerations due to rolling. In some situations this may cause some internal damage to the contents of the containers; in more severe situations failure of the lashing can occur and containers may be lost over-board. Underdeck cargo in ordinary cargo ships and bulk commodities in colliers, ore ships and grain ships can shift if the motions become too severe. The purpose of this study is to concentrate on the additions. either internal or external to the hull, that reduce or otherwise improve the motion responses of the hull. It is assumed that the additions are such that their benefit to the motions of the ship outweights any impact on the ability of the ship to perform its assigned task. It is particularly challenging to obtain large improvements in the motion characteristics of existing ships that are being rebuilt or modified for some task not anticipated in their original design. Further the authors will statistically analyze the influence of ruder-roll-yaw coupling motion in the case of application of this advanced control method to various kinds of ship.

  • PDF

Dynamic characteristics of a tractor cabin during plow tillage and rotary tillage

  • Jong Dae Park;Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Dae Wun Kim;Dae Seung Hwang;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • Due to the environment of irregular soil characteristic for agricultural fields, dynamic characteristic occurs in the tractor cabin during agricultural operations. Operator's fatigue is increased, and operation performance is decreased by these irregular environment conditions. This study was conducted to measure and analyze the dynamic characteristic of a tractor cabin, a major agriculture machinery, during agricultural operations. The specification of tractor used in the study was a 95 kW class tractor. To analyze the dynamic characteristics of the tractor cabin, the main agricultural operations, plow tillage and rotary tillage, were selected. To measure data of dynamic characteristic of the cabin, which continuously changes during operations, an Ellipse Series INS (inertia navigation system) with a built-in IMU (inertia measurement unit) was attached to the center of gravity of the cabin. During field test, the gear stages of plow tillage were B4 (4.3 km·h-1) and B5 (5.6 km·h-1), and the gear stages of rotary tillage were A3 (3.3 km·h-1) and A4 (4.2 km·h-1), which are the most commonly used. To analyze dynamic characteristic such as roll and pitch during operations according to the gear stages. As a result, the dynamic characteristics of pitch increased more than the dynamic characteristics of roll as the travel speed increased, and the dynamic characteristics of both agricultural operations were in the range of 2 to 5°.

Analysis of Output Irregularity from the Transient Behavior of Bundle in a Flow Field (유동계 내 집속체의 과도적 거동에 따른 출력 불균제 해석)

  • Huh Y.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.965-968
    • /
    • 2005
  • Roll drafting operation causes variations in the linear density of bundles because the bundle flow cannot be controlled completely by roll pairs. Defects occurring in this operation bring about many problems successively in the next processes. In this paper, we attempt to analyze the draft dynamics and the linear density irregularity based on the governing equation of a bundle motion that has been suggested in our previous studies. For analyzing the dynamic characteristics of the roll drafting operation, it is indispensable to investigate a transient state in time domain before the bundle flux reaches a steady state. However, since governing equations of bundle flow consisting of continuity and motion equations turn out to be nonlinear, and coupled between variables, the solutions for a transient state cannot be obtained by an analytical method. Therefore, we use the Finite Difference Method(FDM), particularly, the FTBS(Forward-Time Backward-Space) difference method. Then, the total equations system yields to an algebraic equations system and is solved under given initial and boundary conditions in an iterative fashion. From the simulation results, we confirm that state variables show different behavior in the transient state; e.g., the velocity distribution in the flow field changes more quickly the linear density distribution. During a transient flow in a drafting zone, the output irregularity is influenced differently by the disturbances, e.g., the variation in input bundle thickness, the drafting speed, and the draft ratio.

  • PDF

Development of cutting length control systems for crop loss minimization of head end in wire rolling process (선재압연공정에서의 선단부 crop loss최소화를 위한 절사량 제어시스템 개발)

  • 이상호;손붕호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1493-1495
    • /
    • 1997
  • Cropping of head and tail ends of rod in wire Rolling Process is required to aviod roll damage, and prevent cobbles. In order to reduce the crop loss, the new crop control system for rotary shear of Wire rolling Process has been developed. Performance shows the developed system cut precisely within setting length. As a result, it is expected to increase the yield ratio of products about 0.2 percent and stabilize the operantional condition.

  • PDF