• Title/Summary/Keyword: Roll-to-Roll systems

Search Result 385, Processing Time 0.024 seconds

Development of The High-Speed Container Handling System with On-Chassis Type (온-섀시 방식의 고속 컨테이너 하역시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

Added resistance and parametric roll prediction as a design criteria for energy efficient ships

  • Somayajula, Abhilash;Guha, Amitava;Falzarano, Jeffrey;Chun, Ho-Hwan;Jung, Kwang Hyo
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.117-136
    • /
    • 2014
  • The increased interest in the design of energy efficient ships post IMO regulation on enforcing EEDI has encouraged researchers to reevaluate the numerical methods in predicting important hull design parameters. The prediction of added resistance and stability of ships in the rough sea environment dictates selection of ship hulls. A 3D panel method based on Green function is developed for vessel motion prediction. The effects of parametric instability are also investigated using the Volterra series approach to model the hydrostatic variation due to ship motions. The added resistance is calculated using the near field pressure integration method.

Vibration Theory to Design Engine Mount System of Powertrain (파워트레인 마운트계 설계를 위한 진동 이론)

  • Won, K.M.;Yoon, H.W.;Bang, J.H.;Kang, K.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1907-1911
    • /
    • 2000
  • In this paper, classical vibration theories are summarized to design engine mount system of passenger vehicles. The vibrational characteristics of powertrain system and its equation of motion are introduced. Based upon the equation, the concept of the center of gravity, the principle inertia axis, the elastic center, and the elastic axis are defined and some new concepts are suggested. The theory of mode decoupling and the relationship between TRA (Torque Roll Axis) and roll mode are also reexamined to support the design concept of engine mount systems.

  • PDF

Development of an Anti-Seasickness Bed used in Vessel

  • Kim, Young-Bok;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.112-116
    • /
    • 2014
  • Roll and pitching motions of a vessel can seriously degrade the performance of mechanical systems and the effectiveness of personnel. Many studies on roll stabilization and trimming control system design have focused on stabilizing the vessel through the use of fins, tanks, rudders and flaps. However the ultimate objective of such approaches must be to improve boarding sensitivity. This paper presents an anti-seasickness bed that consists of a rotator and bearing system that does not make use of electric power. The advantages of this system are its simple construction, usefulness, and safe operation. In this study, the rotation angles of the upper plate of a bed according to change weight of the rotator have been calculated to determine the stability. As a result, it can be concluded that proposed stabilizing bed can be of practical use in the field.

A Cutting Stock Problem in the Sheet Steel Cutting Production (강판 절단 생산에서의 CSP)

  • 오세호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.47-52
    • /
    • 1995
  • The aim of this paper is to suggest the cutting stock problems which are two-dimensional in form, but can be treated as the optimization methods for one-dimensional cutting stock problem by exploiting the length requirement of the products. The solution method consists of two stages. The first calculates the number of roll pieces of each size. Next, 1-dimensional cutting stock model is set up. One heuristic method to calculate the number of each roll is suggested. The trim loss minization criteria are used to design the objective function. This model can be solved by the conventional cutting stock procedures based on enumerating the possible cutting patterns.

  • PDF

A genetic algorithms optimization framework of a parametric shipshape FPSO hull design

  • Xie, Zhitian;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.301-312
    • /
    • 2021
  • An optimization framework has been established and applied to a shipshape parametric FPSO hull design. A single point moored (SPM) shipshape floating system suffers a significant level of the roll motion in both the wave frequencies and low wave frequencies, which presents a coupling effect with the horizontal weathervane motion. To guarantee the security of the operating instruments installed onboard, a parametric hull design of an FPSO has been optimized with improved hydrodynamics performance. With the optimized parameters of the various hull stations' longitudinal locations, the optimization through Genetic Algorithms (GAs) has been proven to provide a significantly reduced level of the 1st-order and 2nd-order roll motion. This work presents a meaningful framework as a reference in the process of an SPM shipshape floating system's design.

A Methodology for Global ERP Implementation Based on GSI(Global Single Instance) and Its Application (GSI(Global Single Instance)기반의 Global ERP 구축 방법론 및 적용 사례)

  • Lee, Jae-Kwang;Cho, Min-Ho
    • Journal of Information Technology Services
    • /
    • v.7 no.3
    • /
    • pp.97-114
    • /
    • 2008
  • Many companies have implemented ERP systems to enhance their process competitiveness. Since most ERP systems down to date are implemented and managed on each separated business-unit or company level, such systems run short of the consideration about global business processes and global system managements. In order to integrate a successful global ERP, it is essential to apply the well-systematic implementation methodology which considers global standardization and global IT requirements. It is, however, the actual circumstance that such well-structured methodologies for global ERP implementation are hardly shown not only from domestic site but from foreign one. This paper indicates the global ERP implementation guideline with integrated approach including; the standard process design for efficient execution of global business; the ERP implementation method considering global IT requirements; and, the management method for global system operation. GSI ERP methodology is composed of 3 Phase:Global Strategy Planning, Global Template Construction and Global Roll-Out. Phase1; Global Strategy Planning contains Environment Analysis, GSI direction and Implementation Plan. Phase2; Global Template Construction contains Business blueprint, GSI operation design and Global template implementation. Phase3; Global Roll-out contains local business analysis, local ERP implementation and Global ERP Operation.

Design of the Robust Servo Control System for Steel Making Plant using Disturbance Observer Algorithm (DOB를 이용한 제철설비용 강인 서보 제어시스템 구현)

  • Kim, Dong-Sam;Heo, Yun-Je;Jeong, Wan-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.693-696
    • /
    • 2003
  • Among many servo control systems in steel making plant, AGC system in hot rolling mill is very important to get a accurate strip thickness for good quality. AGC (Auto Gauge Control) system controls the roll gap to maintain the required thickness by using the variation of roll force and the measure of output thickness. In this paper, a simulator of AGC system which unifies both hydraulic servo control system and AGC algorithm is suggested. After proving the concurrence of algorithms between the simulator and real system, main actuator system is added. Instead of usual PI system used in present system, DOB control scheme is applied and shows the effect of disturbance attenuation well.

  • PDF

GPS/INS Integrated Navigation Systems Design for Spinning Smart Munitions (회전하는 지능 포탄의 GPS/INS 통합 항법 시스템 설계)

  • Kim, Jeong-Won;Kang, Hee-Won;Jeong, Ho-Cheol;Hwang, Dong-Hwan;Lee, Sang-Jeong;Lee, Tae-Gyoo;Song, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2009
  • Since GPS receivers and INS algorithms do not work properly in the spinning vehicles due to change of the GPS signal and excess of the measurement limitation of the gyroscope, conventional GPS/INS integrated navigation systems do not provide accurate navigation outputs. This paper proposes a design method for GPS/INS integrated navigation systems of spinning vehicles. A special GPS receiver with a signal tracking loop for changed GPS signal caused by spinning and an INS with a roll estimation method are configured and the conventional integration filter is combined. The proposed method was verified through comparison of the navigation results. The result of the proposed method for the spinning vehicle was similar to that of the conventional navigation system without spinning.

Elongation of Contact Length on the Line of Action in Roll Forming of Gears

  • Seizo Uematsu;Lyu, Sung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.321-328
    • /
    • 2003
  • The elongation of contact length on the line of action is considered with particular reference for roll forming of gears, and for dynamic behavior of the tooth in meshing. However there is no paper that discuss the elongation of contact length in the load meshing of gears. Based on our investigation, the contact length on the line of action elongates more than the kinematically calculated value. In rolling, as the tool approaches the workpiece, the center distance of the gears decreases by a small amount. But, the elongation of contact length is sensitive. Therefore, the contact point on the line of action is difficult to be determined, which complicates the tooth analysis. In this study, the exact relation between the elongation of contact length and the tooth space over the recess or before the approach are revealed by experiments and kinematic theory. This analytical result applies not only for rolling, but also for the single flank meshing which is done under constant center distance.