• Title/Summary/Keyword: Roll-to-Roll system

Search Result 904, Processing Time 0.032 seconds

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

Double-Pitch Dual Grating Method for Detecting the Axial Offset in Roll System (2 배수 피치비를 갖는 이중 격자 측정법을 이용한 축방향 롤 회전 오차 측정)

  • Kim, Geehong;Ten, Aleksey-Desen;Lim, Hyungjun;Lee, Jaejong;Choi, Keebong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1273-1279
    • /
    • 2013
  • We propose a dual grating alignment technique for roll-to-roll positioning which allows achieving nanometer scale alignment by using micro-size marks. The high precision alignment system were designed and manufactured. It was confirmed that the optical system was properly adjusted and fully aligned with the dual gratings. The experiment and computer simulation results were presented. Alignment accuracy below 50 nm was achieved.

A Study on Intelligent Active Roll Angle Controller Design Analysis and Modeling Algorithm

  • Park, Jung-Hyen
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.146-150
    • /
    • 2009
  • An Intelligent active roll angle controller design algorithm is discussed. The detailed mathematical formulation and analysis are discussed, and then modeling and design method for active roll angle controller are presented. This paper proposes a design method based upon intelligent robust controller design algorithm to control actively roll angle for improving cornering performance problems. The intelligent robust controller is designed for steady speed driving vehicle system model with representation of steering angle and yaw angular velocity parameters for cornering stability. And the detailed formulation and analysis for the objective vehicle system are investigated.

  • PDF

Study on Vehicle Dynamics Performance Evaluation of Electric Active Roll Control System for SUV (SUV 차량용 전동식 능동 롤 제어 시스템의 성능 평가 기술 연구)

  • Jeon, Kwang-Ki;Choi, Sung-Jin;Kim, Joon-Tae;Yi, Kyong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1421-1426
    • /
    • 2012
  • Cornering maneuvers with reduced body roll and without comfort loss are important requirements for car manufacturers. An electric active roll control(ARC) system controls the body roll angle by using motor-driven actuators installed at the centers of the front and rear stabilizer bars. Co-simulation using the Matlab/Simulink controller model and the CarSim vehicle model was proposed to evaluate the performance of the ARC control algorithm. To validate the performance of the ARC actuator and system, bench tests and vehicle tests were proposed.

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.229-232
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them..

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

HYBRID ROLL CONTROL USING ELECTRIC ARC SYSTEM CONSIDERING LIMITED BANDWIDTH OF ACTUATING MODULE

  • Kim, H.J.;Lee, C.R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.123-128
    • /
    • 2002
  • This paper presents the design of an active roll control system for a ground vehicle and an experimental study using an devised electric-actuating roll control system. Based on a three degree of freedom linear vehicle model, the controller is designed using lateral acceleration and rollrate feedback. In order to investigate the feasibility of an active control system, experimental work is carried out using a hardware-in-the-loop (Hil) setup which has been constructed by the devised electric-actuating system and the full vehicle model including tire characteristics. The performance is evaluated by an experiment using the Hil setup with limited bandwidth. Finally, in order to enhance the control performance in the transient region, a hybrid control strategy is proposed and evaluated.

Tube Hydroforming Process Design of Torsion Beam type Rear Suspension Considering Durability (내구성을 고려한 토션빔형 후륜 현가장치의 튜브 하이드로포밍 공정 설계)

  • Lim, H.T.;Oh, I.S.;Ko, J.M.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.201-209
    • /
    • 2007
  • Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.

Numerical Analysis on Flow and Heat Transfer in Twin-Roll Strip Casting Using an Unstructured Fixed-Grid System (비정렬 고정격자계를 이용한 쌍롤 박판주조에서의 유동장 및 열전달 해석)

  • Lee, Jun-Sik;Lee, Ju-Myeong;Jeong, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.648-657
    • /
    • 2002
  • This paper presents a numerical analysis on the solidification characteristics in twin-roll strip casting. Unstructured fixed-grid system was employed to deal with phase change. Melting of pure gallium was analyzed to confirm the validity of present program in both structured and unstructured grid systems. An algorithm for simultaneous calculation of the temperature in the roll and the molten metal pool was developed. The flow field in the pool and heat transfer features between pool and roll were shown. The effect of process parameters was also studied. Since the geometry of the molten metal Pool significantly deforms along the casting direction, unstructured grid system is more efficient. The unstructured grid system gives almost the same accuracy, even though the number of grids is only 60% of the structure done.