• 제목/요약/키워드: Roll-to-Roll process

검색결과 812건 처리시간 0.03초

A Motion Analysis of FPSO in Irregular Waves including Swells

  • Kwak Hyun U.;Choi Hang S.;Shin Hyun S.
    • Journal of Ship and Ocean Technology
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 2005
  • Recently moored offshore vessels like as FPSO(Floating Production Storage Offloading) are frequently deployed in seas for a long time. For successful operation, the motion behavior of such a vessel in waves must be clarified in advance either theoretically or experimentally. It is of particular interest to examine the behavior, when swells are superposed to seas with different incident angle. Such a situation is actually reported in some offshore oilfield. In this paper, the motion of a FPSO in irregular waves including swells is studied in time domain. Hydrodynamic coefficients and wave forces are calculated in frequency domain using three-dimensional singularity distribution method. Time memory function and added mass at infinite frequency are derived by Fourier transform utilizing hydrodynamic damping coefficients. In the process, the numerical accuracy of added mass at infinite frequency is carefully examined in association with free decay simulations. It is found from numerical simulations that swells significantly affect the vertical motion of FPSO mainly because of their longer period compared to the ordinary sea waves. In particular, the roll motion is largely amplified because the dominant period of swell is closer to the roll natural period than that of seas.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Investigation of Seakeeping Performance of Trawler by the Influence of the Principal Particulars of Ships in the Bering Sea

  • Thi Thanh Diep Nguyen;Hoang Thien Vu;Aeri Cho;Hyeon Kyu Yoon
    • 한국해양공학회지
    • /
    • 제38권2호
    • /
    • pp.43-52
    • /
    • 2024
  • Investigating ship motion under real conditions is vital for evaluating the seakeeping performance, particularly in the design process stage. This study examined the influence of the principal particulars of a trawler on its seakeeping performance. The wave conditions in the Bering Sea are investigated using available data. The length-to-beam (L/B) and beam-to-draft (B/T) ratios of the ship are changed by 10% for the numerical simulation. The response amplitude operator (RAO) motion, root mean square (RMS) value and sensitivity analysis are calculated to evaluate the influence of the trawler dimensions on ship motions. The peak RAO motion affected the ship motions noticeably because of the resonance at the natural frequency. The L/B and B/T ratios are important geometric parameters of a ship that significantly influence its RMS motion, particularly in the case of roll and pitch. The change in the B/T ratio has a good seakeeping performance based on a comparison of the roll and pitch with the seakeeping criteria. The present results provide insights into the seakeeping performance of ships due to the influence of the principal dimensions in the design stage.

임의 불량형상을 갖는 냉연판의 퍼지형상제어 시뮬레이션 (Simulation of Fuzzy Shape Control for Cold-Rolled Strip with Randomly Irregular Strip Shape)

  • 정종엽;임용택
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.861-871
    • /
    • 1996
  • In this study, a fuzzy control algorithm was developed for the randomly irregular shape of cold-rolled strip. Currently developed fuzzy control algorithm consists of two parts: the first part calculates the changes of work and intermediate roll bender forces based on the symmetric part of the irregular strip shape, and the second part calculates the weighting factors based on the asymmetric part and modifies the pre-determined roll bender forces according to the weighting factors. As a result of this, bender froces applied at the both sides of the cold-rolled strip were different. In order to simulate the continuous shape control. fuzzy controller developed was linked with emulator which was developed based on neural network. The fuzzy controller and emulator developed simulated the cold rolling process until irregular shape converged to a tolerable range in producing uniform cross-sectional strip shape. The results obtained from the simulation were reasonable for various irregular strip shapes.

고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구 (Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity)

  • 김창희;장현태;박종세;윤종국;노은섭;박지수;구경완
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.

압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과 (Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties)

  • 송준영;김인규;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

분말직송압연 티타늄의 치밀화 거동 (Densification Behavior of Titanium in Direct Powder Rolling Process)

  • 강동환;홍재근;박노광;김태원
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1255-1260
    • /
    • 2012
  • 분말직송압연에 따른 티타늄 분말 집합체의 치밀화 거동을 연구하였다. 이와 관련하여 실험 시 나타나는 롤-밀림 현상을 분석하기 위한 이론적 모델을 개발하였으며, 이를 통해 보다 실질적인 유한요소 해석을 수행하였다. 개발된 롤-밀림 모델을 통해 공정변수에 따른 롤-밀림의 경향을 정량적으로 파악하였으며, 분말직송압연 공정의 유한요소 해석을 통해 판재의 위치 별 최종 상대 밀도를 비교적 정확히 예측할 수 있었다. 아울러 공정 시 분말집합체의 치밀화 현상을 이해하기 위해 분말-롤 간 접촉 압력 및 전단응력을 계산하였으며 이를 통해 분말의 물림현상이 나타나는 영역을 보다 명확히 확인할 수 있었다.

기기 면적 대비 높은 화면 비율을 갖는 터치 패널 디스플레이 제조를 위한 차광 테이프의 개발 (Development of Shading Tape for Manufacturing of Touch Panel Display with High Screen-to-Body Ratio)

  • 김기출
    • 융합정보논문지
    • /
    • 제7권4호
    • /
    • pp.75-81
    • /
    • 2017
  • 정보기술의 디자인 트렌드는 시대에 따라 빠르게 변해왔으며, 최근의 정보 디스플레이의 디자인 트렌드는 베젤리스 디스플레이가 대세이다. 베젤리스 또는 에지리스 디스플레이는 휴대폰 디스플레이의 새로운 트렌드로 부상하고 있다. 본 논문에서는 이른바 베젤리스 디스플레이라고 불리는 기기 면적 대비 높은 화면 비율을 갖는 터치패널 디스플레이의 조립 공정에 적합한 차광 테이프를 개발하였다. 차광 테이프는 자외선 경화형 아크릴계 감압성 점착제를 PET 필름 위에 롤투롤 공정으로 코팅하여 제조하였다. 자외선 경화형 감압성 점착제는 톨루엔을 전혀 사용하지 않는 친환경적인 제조 방법으로 합성되었다. 제조된 차광 테이프의 점착력은 자동화된 인장시험기로 분석하였으며, 형상유지 특성인 칙소성은 주사 전자 현미경으로 분석하였다. 그 결과 제조된 차광 테이프는 터치패널 디스플레이의 조립 공정에 적합한 높은 점착력과 우수한 칙소성을 나타내었다. 이러한 기능성 차광 테이프의 개발은 그 동안 차광 테이프의 칙소성 부족으로 인하여 야기되었던 터치 패널 디스플레이 조립 공정의 생산성향상 및 품질안정성 향상에 기여할 것으로 기대된다.

Safety assessment of caisson transport on a floating dock by frequency- and time-domain calculations

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.99-115
    • /
    • 2014
  • When caissons are mounted on a floating transportation barge and towed by a tug boat in waves, motion of the floating dock creates inertia and gravity-induced slip forces on the caisson. If its magnitude exceeds the corresponding friction force between the two surfaces, a slip may occur, which can lead to an unwanted accident. In oblique waves, both pitch and roll motions occur simultaneously and their coupling effects for slip and friction forces become more complicated. With the presence of strong winds, the slip force can appreciably be increased to make the situation worse. In this regard, the safety of the transportation process of a caisson mounted on a floating dock for various wind-wave conditions is investigated. The analysis is done by both frequency-domain approach and time-domain approach, and their differences as well as pros and cons are discussed. It is seen that the time-domain approach is more direct and accurate and can include nonlinear contributions as well as viscous effects, which are typically neglected in the linear frequency-domain approach.