Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.11.910

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties  

Song, Jun-Young (Department of Advanced Materials Engineering, Chungnam National University)
Kim, In-Kyu (Department of Advanced Materials Engineering, Chungnam National University)
Lee, Young-Seon (Korea Institute of Materials Science, Materials Deformation Group)
Hong, Sun Ig (Department of Advanced Materials Engineering, Chungnam National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.11, 2011 , pp. 910-915 More about this Journal
Abstract
The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.
Keywords
stainless steel; aluminum; clad sheet; interface properties; compound layer; annealing; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 W.S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000).   DOI   ScienceOn
2 H. D. Manesh and A. K. Taheri, Mater. Design. 24, 617 (2003).   DOI   ScienceOn
3 K. J. Min, M. H. Jeong, K. H. Lee, Y. S. Jeong, and Y. B. Park, J. Kor. Inst. Met. & Meter. 47, 675 (2009).
4 Y. M. Hwang, H. H. Hso, and H. J. Lee, Int. J. Mech. Sci. 37, 297 (1995).   DOI   ScienceOn
5 J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee, and Y. R. Cho, J. Mater. Process. Technol. 187-189, 546 (2007).
6 H. D. Manesh and A. K. Taheri, J. Alloys Comp. 361, 138 (2003).   DOI   ScienceOn
7 D. H. Bae, S. J. Jung, Y. R. Cho, W. S. Jung, H. S. Jung, C. Y. Kang, and D. S. Bae, J. Kor. Inst. Met. & Mater. 47, 573 (2009).
8 S. H. Choi, K. H. Kim, K. H. Oh, and D. N. Lee, Mater. Sci. and Eng. A 222. 158 (1997).   DOI   ScienceOn
9 T. Mori and S. Kurimoto, Trans. ASME 120, 179 (1998).   DOI   ScienceOn
10 D. S. Bae, S. K. Kim, S. P. Lee, T. Shibayama, and D. H. Bae, Key Eng. Mater. 345-346, 1497 (2007).   DOI
11 T. Mori and S. Kuromoto, J. Mater. Process. Technol. 56, 242 (1996).   DOI   ScienceOn
12 K. Y. Rhee, W. Y. Han, H. J. Park, and S. S. Kim, Mater. Sci. Eng. A. 384, 70 (2004).   DOI   ScienceOn
13 ASM Handbook, Alloy phase Diagrams, ASM International Alloy Phase Diagram and Handbook Committees, Materials Park, Ohio, USA, 2.44(1992).