• Title/Summary/Keyword: Roll center

Search Result 336, Processing Time 0.03 seconds

Effect of Taper Tension Profiles on Radial Stress of a Wound Roll in Roll-to-roll Winding Process (롤투롤 와인딩 시스템에서 테이퍼 장력과 감김롤 응력분포에 관한 연구)

  • Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2014
  • Winding is an integral operation in almost every roll-to-roll continuous process and center-winding is suitable and general scheme in the winding system. However, the internal stresses within center-wound rolls can cause damage such as buckling, spoking, cinching, etc. It is therefore necessary to analyze the relationship between taper tension in winding section and internal stress distribution within center-wound roll to prevent the winding failure. In this study, an optimal taper tension control method with parabolic taper tension profile for producing high quality wound roll was developed. The new logic was designed from analyzing the winding mechanism by using the stress model in center-wound rolls. The performance of the proposed taper tension profile was verified experimentally.

Roll Motion Analysis of a 3 D.O.F. Planar Car Model using Instantaneous Centers (순간중심을 이용한 평면 3 자유도 자동차 모델의 롤 운동 해석)

  • Lee, Jae-Kil;Shim, Jae-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-98
    • /
    • 2006
  • In this paper, a planar car model with 3 degrees of freedom was analyzed using the concept of the roll center. To avoid ambiguity, force components which require experimental data were excluded. Only kinematic approach was used to find the position and orientation of the vehicle body and the position of the roll center. The roll center was found by the pole with infinitesimal movement and Kennedy-Aronhold theorem. Centrodes, which are the loci of instantaneous centers of planar motion, were constructed with analyzed results to show characteristics of vehicle body motion. To verify the presented analysis method in this paper, the locus of the roll center and the motion of a 3 D.O.F. planar car model were compared with those of the 1 D.O.F. model.

ROLL CENTER ANALYSIS OF A HALF-CAR MODEL USING POLE FOR SMALL DISPLACEMENT

  • Lee, J.K.;Shim, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.833-839
    • /
    • 2006
  • In this paper, roll behavior of three planar half car models are compared. The first model is a simple model whose contact point between a wheel and the ground is assumed to be fixed with a revolute joint. The second model is a modified model of the fIrst model, whose wheel tread width can vary. In this model, the instant center of a wheel with respect to the ground, which is crucial to find the roll center, is assumed to be at the contact point of a wheel and the ground. The last model uses the pole of a wheel with respect to the ground for small displacement as the instant center of a wheel with respect to the ground. Loci of the center of gravity point, the fixed and the moving centrodes which are traces of roll center position in the ground and the body frame respectively, wheel contact points, and instant centers of a wheel with respect to the ground are calculated.

A study on the structural characteristics and roll behavior of suspension for the section profile of torsion beam (토션빔의 단면형상에 다른 현가계의 구조적 특성과 롤 거동에 관한 연구)

  • 이동찬;변준형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.195-202
    • /
    • 1999
  • The kinematic and complicance characteristics of torsion beam axle is structurally related to the location and section profile of torsion beam and the span from body mounting point to wheel center. This paper presents the effect of section properties in torsion beam on the structural characteristics and roll behavior of suspension. The structural characteristics is on the maximum stress on the welding area of torsion beam and the roll behavior is on roll steer and roll-camber of suspension which are important for controllability and stability in cornering. Four factors are used for the section design of torsion beam, which are thickness , midline length, are inner radius, and sector half angle . Through the structural and quasi-static analysis made for six torsion beam axle models, it can be noticed that roll steer and the structural durability of suspension are closely related to warping constant and shear center in section properties of torsion beam.

  • PDF

Development of Manufacturing Technology for Center Floor Cross Member with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 부품 제작 기술 개발)

  • Kim, D.K.;Park, S.E.;Cho, K.R.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.297-300
    • /
    • 2009
  • The roll forming process is often used to manufacture long, thin-walled products such as a pipe. The final cross-section is a comparatively simple open-channel, a closed tube section or a complex profile with several bends. In recent years, that process is often applied to the bumper beam in the automotive industries. In this study, a optimal Center Floor Cross Member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle, and also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Analysis of Synchronization Error in R2R Gravure Off-set Printing Process (R2R 그라비어 오프-셋 인쇄공정에서의 동기화 오차에 대한 분석)

  • Lee, Taik-Min;Kim, In-Young;Park, Sang-Ho;Kim, Bong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1141-1145
    • /
    • 2011
  • Recently, there are many issues about R2R printing technique for mass production of electronic devices. Among the various Roll-to-roll based printing techniques such as gravure, off-set, flexo and so on, "Gravure off-set printing technique" has an advantage of higher printing resolution. The printing unit of gravure off-set printing technique usually consists of plate roll, blanket roll and impressure roll whose. Linear velocities should be synchronized each other for fine pattern printing. However, roller's manufacturing error and printing variations such as pringting pressure, printing speed, roll stroke and so on actually affected their synchronization anf thus the quality of fine fattern. In this paper, we analyzed the effective of synchronization error on printing quality. Also, this paper reviews the relative motion with each roll. And, this paper studys the synchronization error about its generation problem.

Development of the Carbide Reinforced Ni-Grain Roll (탄화물 강화 Ni-Grain Roll개발)

  • Suh Y. C.;Chung B. H.;Lee H. C.;Kim Y. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.223-230
    • /
    • 2004
  • In order to improve the productivity and quality of the hot rolled products, many morden mills have continuously required advanced roll materials. The introduction of HSS rolls in early stands of the Hot Strip Mill brought the excellent performance in wear resistance and surface roughness. Ni-grain rolls used in the later stands was needed to improve the roll performance. Therefore, the carbide reinforced Ni-grain roll was developed. The present paper will describe the development of carbide reinforced rolls made by INI STEEL and the results of mill tests. The wear resistance was increased upto $40\%$ and the anti-accident ablility was remarkably improved compared to the normal Ni-rain roll.

  • PDF

A Study on the Handling Performances of a Large-Sized Bus with the Change of Rear Suspension Geometry (후륜 현가장치 지오메트리 변화에 따른 대형 버스의 조종 안정성 연구)

  • 서권희;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.176-183
    • /
    • 2001
  • It is difficult to find out the kinematic characteristics of a vehicle suspension without the usage of CAE software. The application of CAE software into suspension kinematics and dynamics yields the more precise knowledge on the chassis design. In this study, the influence of the suspension geometry on the handling performances of a large-sized bus is investigated using the DADS software. The front and rear suspension of a large-sized bus are a rigid axle suspension with the four control links. The elastokinematic analysis is performed to evaluate the roll characteristics of the front and rear suspension. The elastokinematic responses are evaluated in terms of the roll center height and roll steer for various geometric parameters. The roll center height is mainly dependent on the vertical displacement of a panhard rod and the vertical displacements of lower control links affect the roll steer of a rear suspension. The parameter study with the change of rear suspension geometry is conducted to investigate the vehicle handling performances. This parameter study shows that the vertical displacement and orientation of a panhard rod influence the handling performances of a large-sized bus significantly.

  • PDF

Roll-to-roll process for large-area transfer of Ag nanowire electrode (은 나노 와이어 전극의 대면적 전사를 위한 롤 투 롤 공정)

  • Park, Yangkyu;Kim, Jae Pil;Kim, Wan Ho;Jung, Kang;Jeong, Ho-Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.173-179
    • /
    • 2022
  • This study presents a roll-to-roll process which is capable of Ag nanowire (AgNW) transfer from polyethylene terephthalate (PET) film to polycarbonate (PC) film. We developed a roll-to-roll machine that consists of two film suppliers, a coater of photo-curable resin, a film laminator, an ultraviolet (UV) exposure unit, and a film winder to facilitate large-area electrode transfer between different flexible substates. Using the process, optimal fabrication condition was investigated by parametric experiments in terms of the UV exposure time, number of thermal cycling, and exposure time of high temperature and humidity. A fabricated AgNW on PC film showed sheet resistance of 52 Ω/sq and optical transmittance of approximately 80 % over a range of visible light.

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.