• Title/Summary/Keyword: Roll axis model

Search Result 30, Processing Time 0.024 seconds

An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation (차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증)

  • 배상우;윤중락;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Roll Compensation for Homing Seekers with 2-Axis Gimbal (2축 김발 호밍 탐색기에서의 롤운동 보상)

  • Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1932-1934
    • /
    • 2001
  • In this paper, a horizontal LOS(line of sight) rate estimator for conventional sea skimming ASM(anti-ship missile) is proposed. A LOS rate dynamics model in 2 axis gimbal system and in homing geometry is derived. And a new LOS rate estimator is proposed by applying a Kalman filter theory to the LOS rate dynamics model. The proposed filter can estimate LOS rates with taking roll motions into account. Simulation results show the proposed filter produces smaller estimation errors than a conventional method.

  • PDF

Deformation Analysis of Roll Mold for Nano-flexible Devices

  • Khaliq, Amin;Tahir, Usama;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.47-50
    • /
    • 2021
  • Nanoimprint lithography (NIL) has revolutionized the fabrications of electronics, photonics, optical and biological devices. Among all the NIL processes, roll-to-roll nanoimprinting is regarded best for having the attributes of low cost, continuous, simple, and energy-efficient process for nanoscale device fabrication. However, large-area printing is limited by the master mold deformation. In this study, a finite element model (FEM) has been constructed to assess the deformation of the roll mold adhesively wrapped on the carbon fiber reinforced material (CFRP) base roll. This study also optimizes the deformations in the metallic roll mold with respect to nip-forces applied in the printing process of nano-fabrication on large scale. The numerical simulations were also conducted to evaluate the deflection in roll mold assembly due to gravity. The results have shown decreasing trend of the deformation with decreasing nip-force. Also, pressure uniformity of about 40% has been optimized by using the current numerical model along with an acceptable deflection value in the vertical axis due to gravity.

Prediction Model of the Exit Cross Scetional Shape in Round-Oval -round Pass Rolling

  • Lee, Young seog;Gert Goldhahn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.87-93
    • /
    • 2001
  • A reliable analytic model that determines the exit cross sectional shape a workpiece(material) in round-oval (oroval-round) pass sequence has been developed. The exit cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groovw to the roll axis direction. The requirements placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by not rod rolling experiment with the roll gap and specimen size changed. The exit cross sectional shape and area of the workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. We found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Prediction of Stress Free Surface Profile of Wrokpiece in Rod Rolling Process (선재압연공정의 소재 자유표면 형상예측)

  • Lee, Youngseog;Kim, Young-Ho;Jin, Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.174-180
    • /
    • 2000
  • A reliable analytic model that determines the cross sectional shape of a workpiece(material) in round-oval(or oval-round) pass sequence has been developed. the cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove to the roll axis direction. The requirements we placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by hot rod rolling experiment with the roll gap and specimen size changed. The cross sectional shape and area of a workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. It was found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Calcuation of Stress Free Surface Profile of Stock in Red Rolling(I) (선재 압연의 소재 자유표면 형상 계산(I))

  • 이영석;최상우;유선준;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.78-87
    • /
    • 1999
  • A mathematical model for the stress free surface profile in Over-Round and Round-Oval grove rolling, which can be used effectively in the calculation of pass area, is presented. The new model has generality, simplicity and accuracy for practical usage. The stress free surface profile of an outgoing stock can be modeled when the maximum spread of it known a priori. The equation for the stress free surface profile is formulated from the linear interpolation of the radius of curvature of an incoming stock and that of roll groove to the axis direction. In developing the analytical model, the effect of rolling temperature and friction between roll and work piece(stock) were not considered since the geometry of roll groove and the incoming work piece were assumed a dominant factor which decides the stress free surface profile of the outgoing stock. A simulation with the analytical model developed also has been carried out to demonstrate the stress free surface profile of the outgoing stock.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Lateral-Directional Dynamic Inversion Control Applied to Supersonic Trainer (초음속 고등훈련기 가로-방향축 모델역변환 비행제어법칙 설계)

  • Kim, Chongsup;Ji, Changho;Cho, In-Je
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2014
  • The modern version of aircrafts is allowed to guarantee the superior handing qualities within the entire flight envelope by imposing the adequate stability and flying qualities on a target aircraft through the various techniques of flight control law design. Generally, the flight control law of the aircraft in service applies the various techniques of the verified control algorithm, such as dynamic inversion and eigenstructure assignment. The supersonic trainer employs the RSS(Relaxed Static Stability) concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system of both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. In this paper, the lateral-directional flight control law is designed by applying dynamic inversion control technique as a different method from the current supersonic trainer control technique, where the roll rate command system is designed at the lateral axis for the rapid response characteristics, and the sideslip command system is adopted at the directional axis for stability augmentation. The dynamic inversion of a simple 1st order model is applied. And this designed flight control law is confirmed to satisfy the requirement presented from the military specification. This study is expected to contribute to design the flight control law of KF-X(Korean Fighter eXperimental) which will proceed into the full-scale development in the near future.

Prediction Model of the Exit Cross Sectional Shape of Workpiece in Round-Oval-Round Pass Rolling

  • Lee, Youngseog;Kim, Byung-Min;Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.785-798
    • /
    • 2002
  • A reliable analytic model that predicts the surface profile of the exit cross section of workpiece in round-oval (or oval-round) pass sequence is established. The presented model does not require any plasticity theory but needs the only geometric information on workpiece and roll groove. Formulation is based on the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove in the roll axis direction when the maximum spread of workpiece is known beforehand. The validity of the analytic model is examined by hot rod rolling experiment with the roll gap, specimen size, design parameter of oval groove and steel grade changed. Results revealed that the cross sectional shapes predicted by the model were in good agreement with those obtained experimentally. We found that the analytic model not only has simplicity and accuracy for practical usage but also saves a large amount of computational time in comparison with finite element method.