• Title/Summary/Keyword: Roll Pressure

Search Result 205, Processing Time 0.03 seconds

A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System (Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로-)

  • 한성욱;정영진;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

Development of Real-time Flatness Measurement System of COF Film using Pneumatic Pressure (공압을 이용한 COF 필름의 실시간 위치 평탄도 측정 시스템 개발)

  • Kim, Yong-Kwan;Kim, JaeHyun;Lee, InHwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2021
  • In this paper, an inspection system has been developed where pneumatic instruments are used to stretch the film using compressed air, thus the curl problem can be overcome. When the pneumatic system is applied, a line scan camera should be used instead of an area camera because the COF surface makes an arc by the air pressure. The distance between the COF and the inspection camera should be kept constant to get a clear image, thus the position of COF is to be monitored on real-time. An operating software has been also developed which is switching on/off the pneumatic system, determining the COF position using a camera vision, displaying the contour of the COF side view, sending self-diagnosis result and etc. The developed system has been examined using the actual roll of COF, which convince that the system can be an effective device to inspect the COF rolls in process.

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

The Effects of Trunk Stability Education in Pelvic Stabilization (체간안정화 교육이 골반안정성에 미치는 효과)

  • Lee, Hando;Kim, Hyerim;Kim, Hyunjung;Choi, Eunhwa;Son, Byeonggi;Park, Jungbo;Park, Juyoul;Kim, Taeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the effects using pressure biofeedback and teaching abdominal hollowing exercise on pelvic stabilization during the active straight leg raising test. METHOD: The subjects were divided into 3 groups who were fourty eight healthy participants, aged 20~25 years recruited for this study. First group wad control group. This group didn't any education. Second group was teaching them for a week. And last group was teaching abdominal hollowing exercise. The rotation angles of pelvic were measured by the motion anayalyser on flat surface and on form roll for the active leg raising. RESULT: Using pressure biofeedback and teaching abdominal hollowing exercise groups were significantly effective than control group in rotation angles of pelvis. And using pressure biofeedback group was more effective than teaching core stability muscles contraction group. CONCLUSION: This study suggested that patients with low back pain and pelvic instability can improve pelvic stabilization through pressure biofeedback and teaching abdominal hollowing exercise.

Fabrication and Magnetic Properties of Ultrathin Co-based Amorphous Alloy (코발트계 극박형 비정질합금의 형성과 자기적 성질)

  • 노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.255-260
    • /
    • 1998
  • Fabrication condition and magnetic properties of ultrathin Co-based amorphous alloy have been investigated. When the ejection gas pressure was lower than 0.05 kgf/$\textrm{cm}^2$ at the roll speed of 55 m/s, ultrathin ribbons with the thickness less than 10 ${\mu}{\textrm}{m}$ were successfully obtained. The ribbon thickness decreased linearly with the decrease in ejection pressure. Moreover the significant decrease in ribbon width was accompanied with the decrease of thickness in the range of ejection pressure to form an ultrathin ribbon. This behavior was attributed to the decrease of effective ejection pressure in the both end-sides of rectangular nozzle due to the larger friction between molten metal and nozzle wall. The effective permeability at low frequency (1 kHz) decreased largely with the decrease in ribbon thickness, while the coercive force increased with the thickness decrease. It was considered that these behaviors were due to the enhancement of surface effect leading to the suppression of wall motion. However effective permeability at high frequency (1 MHz) increased with the decrease in ribbon thickness, and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current.

  • PDF

Profile Ring Rolling Manufacturing Technology of Alloy 718 (초내열합금 링제품의 형상링 압연 제조 기술)

  • Kim, T.O.;Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.425-428
    • /
    • 2009
  • Aerospace engine application needs to stand high temperature and pressure. Because of its mechanical properties such as high strength at high temperature, Alloy 718 is used aerospace engine application about 80%. But alloy 718's mechanical properties cause some problem to manufacturing profile ring like damage of material and mold. In this study, alloy 718's mechanical properties investigated for knowing its formability and using FE-Simulation for designing profile ring roll process and mold shape. Profile ring rolling processing is designed with "Initial material$\rightarrow$Blank$\rightarrow$Linear Ring$\rightarrow$Profilering". Blank's heating temperature is setting $1100^{\circ}C$ for manufacturing a trial profile ring on the basis of FE-Simulation. As a result of manufacturing alloy 718 profile ring, it is possible to make near target profile shape ring with all of the processing condition which gives in this study.

  • PDF

A New Approach to Motion Modeling and Autopilot Design of Skid-To-Turn Missiles

  • Chanho Song;Kim, Yoon-Sik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • In this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic cross-couplings and nonlinearities with angle of attack. The model of missile motion is derived in the maneuver plane and, based on that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerodynamic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates. Besides the outputs, further information such as Mach number, dynamic pressure, total angle of attack, and bank angle is required. With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that the induced moments and some aerodynamic nonlinearities are properly compensated and that the performance is superior to that of the conventional ones.

A Study on The Wear Process and Wear Mechanism of the Alumina Ceramics with Different Alumina Purity (순도를 달리한 알루미나 세라믹스의 마멸과정 및 이의 기구에 관한 연구)

  • 전태옥;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3404-3412
    • /
    • 1994
  • The present study was undertaken to investigate the dry wear process and wear mechanism of the alumina ceramics in the purity variation which are used for the mechanical seal, roll, liner and dies. The wear test was carried out under different experimental condition using the wear testing device and in which the annular surface rubbed on dry sliding condition various sliding speed, contact pressure and sliding distance. In case of alumina purity 95%, there was speed range which wear loss increased rapidly owing to enlargement of heat impact force and temperature rise of wear surface. According as the alumina purity increased, wear loss decreased but alumina purity 85% with much void and defect had the most wear loss than any other alumina purity. The friction coefficient of sliding initial stage of wear curves has a large value but according to increase of sliding distance, it decreased owing to drop of the shear strength of wear surfaces.

Position Control of 3 D.O.F. Cylinder Systems Using ER Valve Aetuators (ER밸브 작동기를 이용한 3자유도 실린더 시스템의 위치제어)

  • 조명수;조명수;김재환;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.565-568
    • /
    • 1995
  • This paper presents the position control of a closed-loop cylinder system using ER(electro-rheological)valve actuators. Following the field-dependent pressure analysis of the ER valve actuators on the basis of Bingham model of ER fluids, a 3 d.o.f. close-loop sylinder system having the heave, roll and pitch motions is proposed. The governing equations of motion are derived using Lagrange's equation, and a control model is established by considering system uncertain parameters such as load conditions. A sliding mode controller which has inherent robustness to system uncertainties is adopted to achieve robust tracking control performance. Tracking control results for sinusoidal trajectory were presented in order to demonstrate the effectiveness of the proposed control system.

  • PDF

Study on Triaxiality Velocity of COMS induced by Wheel Off-loading

  • Park, Young-Woong;Kim, Dae-Kwan;Lee, Hoon-Hee
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.3-36.3
    • /
    • 2008
  • KARI (Korea Aerospace Research Institute) is going to launch a Communication, Ocean and Meteorological Satellite (COMS) at summer of 2009. It will be first thing to be developed for a geostationary satellite through domestic technology. Of course, KARI has performed this development program with EADS Astrium in France since 2005. COMS has the non-symmetric configuration that the solar array is only attached on the south panel. Due to the configuration, momentum of satellite will be rapidly accumulated induced by solar pressure and then 3 wheels of large momentum are located on roll-yaw plane for attitude control. Therefore, to prevent the saturation of wheel momentum, wheel off-loading will be performed two times per day during 10 minutes for each one. At the moment, translation movement on 3-axes direction appears because of using thrusters. In this paper, strategy of the wheel off-loading and triaxiality which is the translation effect on 3-axes are introduced. Consequently, the result of optimized triaxiality considering the wheel off-loading strategy is summarized.

  • PDF