• 제목/요약/키워드: Roll Force Model

검색결과 110건 처리시간 0.024초

보정함수를 이용한 강판의 열간 압연하중 예측 정도향상 (Improvement of Rolling Force Estimation by Modificaiton Function for Hot Steel Strip Rolling Process)

  • 문영훈;이경종;이필종;이준정
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1193-1201
    • /
    • 1993
  • 본 연구에서는 통계학적 이론 및 희귀분석에 근거한 보정함수를 모델 수정에 도입하여 조업조건별로 예측오차 요인들을 제거함으로써 예측 모델의 정도를 향상시키 고자 하였다. 이를 위해 일반강에 비해 압연하중 모델의 예측정도가 상대적으로 낮은 극저탄소강을 대상으로 하여 압연조업에 따른 압연하중 예측모델의 오차요인을 조업인 자별로 분석하였고 적용시켜 모델의 적중도를 향상시켰다.

쌍로울형 박판연속주조공정의 개발과 자동화에 관한 연구 (The Study on Automation and Development of Strip Continuous Casting by Twin Roller Type)

  • 이상매;김영도;백남주;강충길
    • 한국정밀공학회지
    • /
    • 제7권1호
    • /
    • pp.37-52
    • /
    • 1990
  • In this study, the characteristics of cooling and rolling during strip casting process is obtained in comparison with the experimental and analytical results. The prupose of this study is to effectively analyze the thermal and mechanical deformation of roller applying the results of the heat transfer and the pressure distribution to boundary conditions. And then the relation between strip thickness and roll deformation is shown. The second purpose is to obtain the proper condition of the continuous casting for stainless steel. The summary and conclusions can be made on the basis of the results obtained by the theories and experiments. a) The strip casting condition for the fine surface quality of tin-alloy as-cast material was obtained in accordance with the velocity of roll rotation and initial roll gap. b) The experimental condition that the dimension of the cast strip thickness coincide with that of the initial roll gap was according to the experimental result of continuous casting by twin-roll type. c) The thermoelastic finite element model to calculate the roll deformation is represented. Thermoelastic model prediction for the roll deformation are in good agreement with the experimental results considering the thermal expansion of the roll. d) The higher cooling rates were obtained by a twin-roller quenching technique. Also quenched microstructure of the rapidly solidified shell was verified. e) The magnitude of roll deformation due to the thermal expansion and roll separating force is quantit- atively represented in the analysis of continuous casting for stainless steel.

  • PDF

롤 형상 이상진단 및 이상극복 장력제어에 관한 연구 (A Study on the Fault Diagnosis of Roll-shape and Fault Tolerant Tension Control in a Continuous Process Systems)

  • 이창우;신기현;강현규;김광용;최승갑;박철재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.963-968
    • /
    • 2003
  • The continuous process systems usually consists of various components: driven rollers. idle rolls, load-cell and so on. Even a simple fault in a single component in the line may cause a catastrophic damage on the final products. Therefore it is absolutely necessary to diagnosis the components of the continuous systems. In this paper, an adaptive eccentricity compensation method is presented. And a new diagnosis method for transverse roll shape defects on rolling process is developed. The new method was induced from analyzing the rolling mechanism by using rolling force model, tension model, Hitchcock's equation, and measured delivery thickness of materials etc. Computer simulation results also show that the proposed diagnosis methods is very effective in the diagnosis of 3-D roll shape

  • PDF

조질 압연기의 동적 모델링과 제어시스템 분석 (Dynamic Modeling and Analysis of Control Systems for Skin Pass Mill)

  • 이규택;이원호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.316-316
    • /
    • 2000
  • SPM dynamic model was developed by using Bland & Ford formulas considered elastic zone in roll gap, gauge meter equation, tension equation, speed equation and actuator models. And SPM controllers of the field were done model ing. It was shown the efficiency of constant tension, rol1ing force and elongation controllers by the simulation program and it was recommended the proper gain to the controllers of the field.

  • PDF

SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발 (Development of Tire Lateral Force Monitoring System Using SKFMEC)

  • 김준영;허건수
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.

풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究) (A Study on the Maneuverability of a Rolling Ship under Wind Forces)

  • 김진안;이승건
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

경사면에서 선회운동하는 SUV차량의 롤거동 해석 (A Roll-behavior Analysis of SUV in Turning Motion on a Slope)

  • 방정훈;이병훈
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.131-137
    • /
    • 2014
  • The SUV has a risk of rollover because of the highness of center of mass. In this paper the roll-behavior of a SUV in turning motion is analyzed. Dynamic model of the vehicle on the slope is developed and simulation is carried out using the software ADAMS/Car. The results show that the relational expression between the ground force acting on the tire and the roll motion is well established. It is also identified that the driving state of the vehicle becomes unstable at the lower or upper position of the slope.

대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발 (Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck)

  • 문일동;권혁조;오재윤
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

Agricultural tractor roll over protective structure (ROPS) test using simplified ROPS model

  • Ryu-Gap Lim;Young-Sun Kang;Dae-Hyun Lee;Wan-Soo Kim;Jun-Ho Lee;Yong-Joo Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.771-783
    • /
    • 2022
  • In this study, the feasibility of alternative tractor Roll Over Protective Structure (ROPS) designed to evaluate conditions required for testing was confirmed. In accordance with Organization for Economic Cooperation and Development (OECD) code 4, the required load energy of the tractor ROPS was determined. First, the tractor ROPS test was performed and a repeated test was performed using a simplified ROPS as an alternative tractor ROPS. The test procedure is first rearward, second lateral, and last forward based on ROPS. The load test device consists of a load cell that measures force and a LVDT that measures deformation. Precision was confirmed by calculating the relative standard deviation of the simplified ROPS repeated test. Accuracy was analyzed by calculating the mean relative error between the mean measured values in the simplified ROPS test and the tractor ROPS test. As a result, the relative standard deviation was less than 2.5% for force and 3.3% for maximum deformation overall, showed the highest precision in lateral load. The mean relative error value for force measured at the lateral load of simplified ROPS was 0.5%, showing the highest accuracy. In the front load test, the mean relative error of maximum deformation was 20.5%, showing the lowest accuracy. The mean relative error (MRE) was high in the forward load test was because of structural factors of the ROPS. The simplified ROPS model is expected to save money and time spent preparing tractors.

연속냉간압연에서의 압하력 예측을 위한 모델 개발에 관한 연구 (A Study on Development of Model for Prediction of Rolling Force in Tandem Cold Rolling Mill)

  • 손준식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.491-496
    • /
    • 2000
  • In the tandem cold rolling mill, the quality is very important and requirements for thickness accuracy become more strict. Howerver, the mathematical model for prediction of rolling force was not considered an elastic deformation at the entry and delivery side of the contacted area between the worked roll and rolling strip so that where was so difficult to control of the thickness. To overcome this problem, the mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even f the effect of elastic compression was not important.

  • PDF