• 제목/요약/키워드: Roll Design

검색결과 643건 처리시간 0.025초

가변 롤 성형 공정시 길이방향 변형률에 근거한 제품 형상 설계 기술 개발 (Development of Profile Design Method Based on Longitudinal Strain for Flexible Roll Forming Process)

  • 주병돈;한상욱;신세계로;문영훈
    • 소성∙가공
    • /
    • 제22권7호
    • /
    • pp.401-406
    • /
    • 2013
  • The use of roll-formed products increases every year due to its advantages, such as high production rates, reduced tooling cost and improved quality. However, till now, it is limited to part profiles with constant cross section. In recent years, the flexible roll forming process, which allows variable cross sections of profiles by adaptive roll stands, was developed. In this study, an attempt to optimize profile design for the flexible roll forming process was performed. An equation that predicts the longitudinal strain for part geometries with variable cross-sections was proposed. The relationship between geometrical parameters and the longitudinal strain was analyzed and investigations on the optimal profile design were performed. Experiments were conducted with a lab-scale roll forming machine to validate the proposed equation. The results show that the profile design method proposed in this study is feasible and parts with variable cross sections can be successfully fabricated with the flexible roll forming process.

접압롤을 이용한 권취장력의 비선형 PID 제어 (A nonlinear PID control of winding tension using contact roll)

  • 신기현;김규태;천성민
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2029-2037
    • /
    • 1997
  • In a web winding process, the contact roll plays many important roles including air-entrainment control and WIT(Wound In Tension) regulation. The behavior of contact roll significantly affects the winding tension characteristics specifically at the time of contact when the speeds of contact roll and the winding roll are not synchronized. A mathematical model for the web, the winding roll, and the contact roll is derived. By using the model derived, a nonlinear PID(NPID) controller is designed to control the winding tension at the time of contact and separation between the contact roll and the winding roll. Computer simulation study showed that the performance of the winding system with the NPID controller significantly improved compared with that of a system with PID controller.

CFD에 의한 발사체 롤 베인 제어 효율성 예측 및 구동 시스템 설계 (AN ESTIMATION OF THE ROLL CONTROL EFFECTIVENESS OF THE ROLL VANES OF A LAUNCH VEHICLE USING CFD AND DESIGN OF AN ACTUATION SYSTEM)

  • 김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.87-91
    • /
    • 2005
  • A conceptual design for the movable roll vane system is done for the roll stability control of KSLV-I. The control effectiveness of the roll vanes is estimated using the numerical simulation. The hinge location is selected to minimize the torque requirement at the maximum dynamic pressure condition, and the maximum torque of 3.0 kN-m is found to be required to actuate the roll vanes for the entire range of operation. An electro-mechanical actuator system which is composed of a DC motor, the speed reducers, the battery package and the controller is designed using the given requirements, the maximum torque of 3.0 kN-m, the maximum deflection angle of 25 deg. and the maximum angular velocity of 30 deg/sec. More detailed design to make more compact and highly efficient system will be done in the future.

  • PDF

가변 단면 성형 롤의 반경 증가에 의한 롤 간섭 제거 (Elimination of Roll Interference by Increasing Radius of Variable Section Forming Roll)

  • 김광희;윤문철;곽재섭
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, we investigated whether the interference occurring in forming roll surfaces could be eliminated by increasing the radius of the variable section forming rolls. The surfaces of the rolls capable of forming products with different flange heights and bend angles with the bend line tilted at an angle of 1° from the longitudinal axis were created using the general CAD software CATIA. Roll interferences were determined for the change in the forming roll radius. The minimum gaps between the upper and lower roll surfaces were measured for the change in the forming roll radius, and the roll interferences were calculated from the difference between the measured value and the thickness of the product. It was observed that the thickness of the product had a slight effect on the roll interference when the thickness was between 0.8 and 1.2 mm. It was also observed that the roll interference could be eliminated by increasing the roll radius.

스테인러스 슬라이드 레일의 정밀 롤 포밍을 위한 유한요소해석 (Finite Element Analysis for Precision Roll Forming Process of Stainless Slide Rail)

  • 이택성;김건완
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.96-103
    • /
    • 2009
  • The roll forming process is commonly used for the conventional 'Fe' metal products such as a furniture drawer guide or an up-down slide guide. Recently its applications are variously expanded to the sanitary facilities or electronic devices. It is essentially required the cleanness for the high technology application and any corrosion or rust are not allowed. Therefore, in those applications the stainless steel materials are strongly demanded as the substitution of 'Fe' steel. However the mechanical properties of stainless steel are not suitable for forming process compared with those of 'Fe' steel. Up to now, the conventional F.E.M.(Finite Element Method) has been used to analyze and design the roll forming process. The purpose of this research is to obtain the proper production process and the shape of rolls to manufacture the high precision slide rails made of stainless steel material. The commercial program, SHARPE-RF, is used to analyze the entire roll forming process. The results show that the rolling process and the roll design by F.E.M. are useful from the good agreement between the shapes of products estimated by F.E.M. and those of the actual products.

A Study on Intelligent Active Roll Angle Controller Design Analysis and Modeling Algorithm

  • Park, Jung-Hyen
    • 융합신호처리학회논문지
    • /
    • 제10권2호
    • /
    • pp.146-150
    • /
    • 2009
  • An Intelligent active roll angle controller design algorithm is discussed. The detailed mathematical formulation and analysis are discussed, and then modeling and design method for active roll angle controller are presented. This paper proposes a design method based upon intelligent robust controller design algorithm to control actively roll angle for improving cornering performance problems. The intelligent robust controller is designed for steady speed driving vehicle system model with representation of steering angle and yaw angular velocity parameters for cornering stability. And the detailed formulation and analysis for the objective vehicle system are investigated.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

롤 크리너 선압의 해석 및 측정기술 (Analysis and Measurement of the Nip Pressure of Roll Cleaner)

  • 최현철;이응기;최종근
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1328-1334
    • /
    • 2006
  • In the rolling mills for sheet metal rolling, paper rolling and etc., the impurities of roller surface have crucial effects on the surface quality of the products obtained by rolling. The Roll Cleaner is a device to remove impurities on roller surface during a rolling operation. Nip Pressure means the line pressure interacted between the roll cleaner blade and the roller surface. The nip pressure is the most important parameter which decides the performance of roll cleaner, and it depends upon several factors including the cleaner design and its blade stiffness. This study, first, analyzes the mechanism of the nip pressure generation for a roll cleaner designed commercially, which is an crucial process for effective design of roll cleaners. Second, the technique for the measurement of nip pressure is developed, which is useful to verify the performance of roll cleaners and to setup them properly at factory floor.

유한요소해석과 반응표면법을 이용한 앵글바의 폭퍼짐 예측 및 공형설계에 관한 연구 (Roll Profile Design Considering Spread in Shape Rolling of Angle Bar by FE-analysis and Response Surface Method)

  • 이상진;고대철;이상곤;김병민
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1368-1375
    • /
    • 2012
  • In this paper, a method for prediction of spread is proposed to design proper roll profile taking into account spread in shape rolling of angle bar. The effect of the process variables on spread, such as draught ratio, bending angle and aspect ratio, is analyzed by FE-analysis and response surface method (RSM). Roll profiles for equal angle bar are designed with the spread predicted by the regression equation. Effectiveness of the designed roll profiles are verified by FE-analysis in which the flange length, strain distribution, mean strain and roll torque are compared with those by Geuze. Finally, the proposed method is applied to the design of roll profile for unequal angle bar. As a result, the final product can be obtained within the allowable tolerance of ${\pm}0.5mm$ in length. Therefore, it is found that the prediction of spread can improve the efficiency of design roll profile in shape rolling of angle bar.