• Title/Summary/Keyword: Roll Bonding

Search Result 81, Processing Time 0.02 seconds

Microstructure and Mechanical Properties of AA6061/AA5052/AA6061 Complex Sheet Fabricated by Cold-Roll Bonding Process (냉간압연접합법에 의해 제조된 AA6061/AA5052/AA6061 복합판재의 미세조직 및 기계적 성질)

  • Hwang, Ju-Yeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.392-397
    • /
    • 2019
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by a Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.84-87
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with large misorientations between neighboring grains were obtained. The grain size was about 0.2$\mu\textrm{m}$. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear teats of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surfaces of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

  • PDF

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by an Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.376-381
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with a large misorientation between neighboring grains were obtained. The grain size was about 0.2 $\mu$m. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear tests of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surface of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.

Microstructure and Mechanical Properties of AA1050/Mg(AZ91)/AA1050 Complex Sheet Fabricated by Roll Bonding Process (접합압연공정에 의해 제조된 AA1050/Mg(AZ91)/AA1050 복합판재의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee;You, Hyo-Sang;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.154-159
    • /
    • 2016
  • A roll-bonding process was applied to fabricate an AA1050/AZ91/AA1050 laminate complex sheet. Two AA1050 and one AZ91 magnesium sheets of 2 mm thickness, 30 mm width and 200 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 2 mm in thickness by conventional rolling. The rolling was performed at 623K without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 15.9 m/min. The AA1050/AZ91/AA1050 laminate complex sheet fabricated by roll bonding was then annealed at 373~573K for 0.5h. The microstructure of the complex sheets was revealed by electron back scatter diffraction (EBSD) measurement; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the complex sheet was found to increase by 11 % and the tensile elongation decreased by 7%, compared to those values of the starting material. In addition, the hardness of the AZ91 Mg region was slightly higher than those of the AA1050 regions. Both AA1050 and AZ91 showed a typical deformation structure in which the grains were elongated in the rolling direction; however, the mis-orientation distribution of grain boundaries varied greatly between the two materials.

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

Substrate bonding technique using the agar-epoxy composites for flexible LCD

  • Bae, Ji-Hong;Jang, Se-Jin;Choi, Hong;Kim, Sang-Il;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.733-736
    • /
    • 2007
  • We have proposed novel bonding technique of substrates for developing the flexible LCD with high quality. The gel type mixture of agarose and UV curable epoxy developed to obtain tight bonding ability and enhanced electro-optical characteristic simultaneously. This technique can be used to roll-to-roll process for fabricating the flexible LCDs.

  • PDF

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding (냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질)

  • Sang-Hyeon Jo;Seong-Hee Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.

Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process (누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동)

  • Kim Y.S.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

Change in Microstructure and Mechanical Properties of Deoxidized Low-Phosphorous Copper Processed by Accumulative Roll-Bonding with Annealing (ARB가공된 인탈산동의 어닐링에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Kim, Chun-Su;Kim, Sang-Shik;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • A deoxidized low-phosphorous copper processed by eight cycles of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $400^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $350^{\circ}C$, however above $400^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. The hardness of the copper decreased slightly with the annealing temperature up to $350^{\circ}C$, however they dropped largely above $400^{\circ}C$. Annealing characteristics of the copper were compared with those of an oxygen free copper processed by ARB and subsequently annealed.