As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.
An, Sehyuck;Shin, Eun-taek;Song, Chang Geun;Park, Sungwon
Journal of Korea Water Resources Association
/
v.56
no.spc1
/
pp.1007-1014
/
2023
Two-dimensional flow analysis, a fundamental component of hydrodynamics, plays a pivotal role in numerically simulating fluid behavior in rivers and waterways. This modeling approach heavily relies on parameters such as eddy viscosity and roughness coefficient to accurately represent flow characteristics. Therefore, combination of appropriate parameters is very important to accurately simulate flow characteristics. In this study, an automation algorithm was developed and applied to find the optimal combination of parameters. Previously, when applying a two-dimensional flow analysis model, former researchers usually depend on the empirical approach, which causes many difficulties in finding optimal variable values. Using the experimental data, we tracked errors according to the combination of various parameters and applied the algorithm that can determine the optimal combination of parameters with the Python language. The automation algorithm can easily determine the most accurate combination by comparing the flow velocity error values among the two-dimensional flow analysis results among the combinations of 121 (11×11) parameters. In the perspective of utilizing automation algorithm, there is an expected high utility in promptly and straightforwardly determining the optimal combination of parameters with the smallest error.
This study aims to investigate the relationship between service recovery justice, residual emotions, and customer behavior. It empirically verifies that low justice in service recovery affects residual emotions and, in turn, has an impact on customers' negative behaviors. Furthermore, this research distinguishes customer-brand relationship quality into emotional relationship quality and cognitive relationship quality and seeks to validate that the type of relationship quality may influence the extent to which the justice of recovery processes affects residual emotions. Data was collected through surveys, and hypotheses were tested using structural equation modeling. The research findings indicate that among the dimensions of service recovery justice, procedural justice and interactional justice significantly influence residual emotions. Moreover, residual emotions have a significant impact on both the intention to revisit and the intention to engage in negative word-of-mouth. In addition, the impact of distributive justice and procedural justice on residual emotions was found to be higher for cognitive relationship quality than emotional relationship quality, and the impact of interactional justice on residual emotions was found to be higher for emotional relationship quality than cognitive relationship quality.
This paper proposes and tests a theoretical model of the relational link between a novel form of customer-perceived fairness for a reward design (distributive peer justice climate) and C2C helping intention via community identification and online C2C interaction (friend-, neighboring customer-, audience-interaction) qualities in a collective consumption context (MMORPG). To test hypotheses, we amassed survey data within a collective consumption context (massively multiplayer online role-playing games, MMORPGs). We used structural equation modeling in analyzing the survey data. The results reveal that user-perceived distributive peer justice climate for a reward design enhances their C2C helping intention via community identification and C2C interactions in MMORPG contexts. Collective consumption-type service managers should focus on promoting the user-perceived distributive peer justice climate for their reward system to enhance users' present C2C co-creation experience (community identification, C2C interaction) and future C2C co-creation behavior (helping intention). By adopting an intra-unit level distributive justice concept (customer-perceived distributive peer justice climate) to a reward design in a collective consumption context (MMORPGs), this study informed collective consumption-type service managers of the importance of its management.
The purpose of this study is to analyze changes in pre-service chemistry teachers' cognition of the nature of model in the evaluation and modification process of model using technology. Changes in cognition of the nature of model were analyzed focusing on the 'Abstraction' and 'Simplification' of the 'Representational aspect', 'Interpretation', 'Reasoning', 'Explanation' and 'Quantification' of the 'Explanatory aspect' that were deemed insufficient for pre-chemistry teachers in previous study. For this purpose, 19 third-year pre-service chemistry teachers at a teacher's college in Chungcheongbuk-do were asked to evaluate the model related to Boyle's law developed using technology, revise the model based on the evaluation results, and make a final evaluation. As a result of the study, it was confirmed that pre-service chemistry teachers' cognition of 'Simplification' of the 'Representational aspect' and 'Interpretation', 'Explanation', and 'Quantification' of the 'Explanatory aspect' changed positively through the evaluation and modification process of the model. Therefore, it was found that the evaluation and modification process of the model plays a key role in changing the cognition of the nature of model. However, there was little change in cognition of 'Abstraction' of the 'Representational aspect' and 'Reasoning' of the 'Explanatory aspect'. The cognition of these factors can be seen as more difficult to change than the cognition of other factors. To solve this problem, more sophisticated educational design for pre-service chemistry teachers is needed.
This study attempted to provide implications by analyzing the impact of business Owner's safety commitment on industrial accidents and examining the mediating role of management supervisors' safety leadership and worker participation. Analysis was conducted on 2,067 manufacturing sites with 20 to 50 employees in the 10th Occupational Safety and Health Survey data. SPSS waw used to secure the reliability of the measurement variable. Hypothesis vertification was carried out after securing the suitability and validity of the structural model using AMOS. The direct impact of three latent variables on industrial accidents was confirmed: the business owner's safety commitment, the management supervisor's safety leadership, and the worker participation. The employer's safety will and the management supervisor's safety leadership do not directly affect industial accidents, but it has been verified that worker participation has a diret impact on industrial accident reduction. In addition, it has been confirmed that the safety leadership and worker participation of the management. Supervior have a complete mediating effect on the reduction of industrial accidents by mediating with the safety leadership of the management supervior and the participation of the workers. This study analyzed the impact on industrial accidents by dividing the stakeholders constituting the workplace into three classes: business owners, superviors, and workers, but the results suggest that employers and all workers inside the workplace may be organically linked to achieving the goal of reducing industrial accidents. Therefore, in order to establish an autonomous safety management system for safety and health at workerplaces, efforts are needed to reduce industrial accidents in their respective location by forming an organic community among internal stakeholders.
Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.
The purpose of this study was to analyze the effect of the government's R&D support and the use of stock options by venture companies on the innovation of venture companies, that is, innovation capabilities and innovation performance. An empirical analysis was conducted using the partial least squares structural equation modeling (PLS-SEM) method using the data from the detailed survey of venture companies conducted on domestic venture confirmation companies. As a result of the analysis, it was found that the benefit of government R&D support had a positive (+) effect on strengthening the innovation capabilities of venture companies, and R&D support also had a positive (+) effect on the innovation performance of venture companies. Next, it was found that the use of stock options by venture companies had a positive (+) effect on the reinforcement of the innovation capabilities of companies and a positive (+) effect on the innovation performance of venture companies. In addition, it was found that the innovation capabilities of venture companies significantly mediate between the government's R&D support and the use of stock options by venture companies and the innovation performance of companies. These analysis results show that the government's R&D support and the use of stock option systems can play a meaningful role in the innovation of venture companies, and also show that the innovation capabilities of venture companies have an important meaning in the process of innovation. Therefore, it is necessary to continue the stance of R&D support for ventures and at the same time to introduce multi-faceted policy measures to support corporate capacity building, and legal and institutional maintenance and policy support to revitalize the stock option system need to be continuously provided.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.19-24
/
2024
The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.
Recently, a framework crystallizing as Environmental, Social, and Governance(ESG) has been exerting significant influence not only on corporate investment and management philosophies but also on national policies. This ESG framework is becoming an essential requirement for all organizations. It has become an obligation at the corporate and national levels, particularly in the maritime, port, and logistics sectors. Anticipating that the adoption and utilization of the ESG framework will reach higher levels when it becomes a necessity, this study utilized data from international organizations such as the United Nations Conference on Trade and Development(UNCTAD), the World Bank, and the World Economic Forum to analyze the impact of the ESG framework on national economic performance through the maritime, port, and logistics sectors using Partial Least Squares Structural Equation Modeling(PLS-SEM). The analysis revealed that while the ESG framework did not have a direct impact on the national economy, it manifested substantial indirect effects through maritime, port, and logistics sectors. Therefore, in these sectors, the establishment of the ESG framework should be recognized not only as an expenditure and obligation but also as a crucial investment that positively influences the national economic performance. The study's findings are limited by the absence of data beyond 2019 due to the impact of COVID-19. Therefore, it is anticipated that more accurate current effects can be ascertained when newer data becomes available.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.