• Title/Summary/Keyword: Rod Shape

Search Result 354, Processing Time 0.028 seconds

Interfacial Evaluation and Microfailure Mechanisms of Carbon Fiber/Bismaleimide (BMI) Composites using Tensile/compressive Fragmentation Tests and Acoustic Emission (인장/압축 Fragmentation 시험법과 음향방출을 이용한 Carbon Fiber/Bismaleimide (BMI) Composites 의 계면 평가와 미세파괴 메커니즘 연구)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.79-83
    • /
    • 2000
  • Interfacial and microfailure properties of carbon liber/bismaleimide (BMI) composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Since BMI is rather difficult matrix to apply for the conventional fragmentation test because of its too low elongation and too brittle and high modulus properties, dual matrix composite system was applied. After carbon fiber/BMI composite was prepared for rod shape by controlling differing curing stage, composites rod was embedded in toughened epoxy as outer matrix. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile testing, whereas the diagonal slippage in fiber ends was observed during compressive test. On the other hand, AE amplitudes of BMI matrix fracture were higher than carbon fiber tincture under tensile test because BMI matrix has very brittle and high modulus. The waveform of signals coming from BMI matrix fractures was consistent with AE amplitude result under tensile tests.

  • PDF

Organized Structure of Turbulent Boundary Layer with Rod-roughened Wall (표면조도가 있는 난류경계층 내 난류구조)

  • Lee, Jae-Hwa;Lee, Seung-Hyun;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.463-470
    • /
    • 2008
  • Turbulent coherent structures near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The surface roughness rods with the height $k/{\delta}=0.05$ are arranged periodically in $Re_{\delta}=9000$. The roughness sublayer is defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer ($y/{\delta}=0.15$)have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

Analysis on Electric Field Distributions and Corona Characteristics of Special Conductor Bundles for 765kV Transmission Line (765kV 송전선로용 특수 다중도체 방식의 코로나 잡음특성 및 전계분포 해석)

  • Min, Seok-Won;Kim, Yong-Jun;Sin, Gu-Yong;Lee, Dong-Il;Ju, Mun-No;Yang, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.556-560
    • /
    • 2001
  • To solve aeolian noise, we have tried several special conductor bundles equipped with spiral rod and one kind of low aeolian noise conductor with a special shape. Charge simulation method was applied to analyze electric field distributions of them in transmission line and corona cage for investigating the corona characteristics. This paper describes the electric field distributions and the performances of audible noise and radio interference from the special bundles in 765 kV transmission line by using corona characteristics obtained from corona cage simulation.

  • PDF

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.

Non-destructive Analysis of Nano-sized Crack Morphology of Electro-deposit by Using Small Angle Neutron Scattering (소각중성자 산란법을 이용한 도금층의 극미세 균열 형상의 비파괴적 분석)

  • Choi, Yong;Shin, Eun Joo;Hahn, Young Soo;Seung, Baik Seok
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • A method to quantitatively analyze the defects formed by the hydrogen evolution during electroplating was suggested based on the theoretical approach of the small angle neutron scattering technique. In case of trivalent chrome layers, an isolated defect size due to the hydrogen evolution was about 40 nm. Direct and pulse plating conditions gave the average defect size of about 4.9 and $4.5{\mu}m$ with rod or calabash shape, respectively. Current density change of the pulse plating from $1.5A/dm^2$ to $2.0A/dm^2$ enlarged the average defect size from 3.3 to $7.8{\mu}m$. The defect morphology like rod or calabash was originated by inter-connecting the isolated defects. Small angle neutron scattering was useful to quantitatively evaluate defect morphology of the deposit.

Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis (정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화)

  • Min Seek Kim;Min Jeong Park;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Feasibility Study on Surface Microcrack Detection of the Steel Wire Rods Using Electromagnetic Acoustic Resonance (전자기 음향 공진을 이용한 강선의 표면 미세 결함 탐상 타당성 연구)

  • Heo, Taehoon;Cho, Seung Hyun;Ahn, Bongyoung;Lim, Zhong Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • The surface microcrack over a few tens of micrometers is one of severe problems of a steel wire rod to lead to the failure of the final products, so the method to evaluate crack depth has been required to develop. This work investigates the feasibility of electromagnetic acoustic resonance (EMAR) for this problem. EMAR is the method for measurement of resonant features using electromagnetic acoustic transducer (EMAT). Generally, EMAR is sensitive to small variation of the structures and easy to apply it to the industrial field because of the feature of noncontact measurement. Through several EMAR experiments, the change of the resonant frequencies and attenuation in reverberation has been observed. The results confirms that the surface cracks of around 100 micrometer depth can be detected successfully with the present method.

Chemotaxonomic and Phylogenetic Study on the Oligotrophic Bacteria Isolated from Forest Soil

  • Whang, Kyung-Sook
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.150-156
    • /
    • 2000
  • Oligotrophic bacteria isolated from forest soil showed a specific community consisting of various taxonomic groups compared with those in other soil or aquatic habitats. Based on the cell shape, the isolates were divided into four groups: regular rod, curved/spiral rod, irregular rod, and prosthecate bacteria. The cellular fatty acids 60 oligotrophic isolates were analyzed. The 30 fatty acids which were identified or characterized are classified. At the dendrogram based on cellular fatty acid composition, four clusters(I-IV) were separated at a euclidian distance of about 50. Cluster 3 and 4-a strains were containing Q-8, these strains are accommodated in the Proteobacteria gamma and beta subdivision. The chemotaxonomic profiles of the cluster 4-a strains showed good agreement with those of the genus Burkholderia. Cluster 3 was characterized by the presence of branched-chain fatty acids, iso-C15:0, iso-C17:1, and iso-C17:0 as the major components. These chemotaxonomy suggested the close relationship of the isolates with Xathomonas/Sterotrophomonas group. Based on the 16S rDNA sequence analysis, the two representative strains(MH256 and MA828) of cluster 3 showed the close relation to genera, Xathomonas/Sterotrophomonas, but were not included in these genera. These strains were even further away from core Xanthomonas, and clearly were seen to branch outside the cluster formed by the Sterotrophomonas maltophilia. MH256 and MA828 16S rDNA sequence was different enough to put new genus on a separate branch. The isolates with Q-10 were also studied. They are corresponded to the two large groups in Proteobacteria alpha subdivision. One was incorporated in the genus Bradyrhizobium cluster, which also includes Agromonas, a genus for oligotrophic bacteria. The strains of the other group showed high similarity to the genus Agrobacterium.

  • PDF

A Study on the HEC(Hybrid ESE-Conductor) Method for Lightning Protection of Buildings (건축물의 낙뢰보호를 위한 HEC(Hybrid ESE-Conductor) 방식에 관한 연구)

  • Kim, Dong-Jin;Kim, Young-Sun;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.146-152
    • /
    • 2008
  • The frequency of lightning is increased due to improbable weather condition and global wanning. This phenomenon increases economical damage as well as human damage. Advanced countries like europe and north america have applied the facility standard of lightning by accumulating a store of quantitative data about lightning research. Lightning facility is composed of the lightning accepting part for induction lightning, ground connected electrode which conducts lightning current. The lightning accepting part is composed of normal rod, horizontal conductor, ESE lightning rod. Moreover, lightning accepting part is taken to use by the method of protection. This paper suggests HEC(Hybrid ESE-Conductor) method which mixes horizontal conductor and ESE lightning rod. This is also discovered by experiment that the starting point of corona discharge current is low, so it is efficient for lightning protection comparing with other methods. Moreover, distribution of electric field is analyzed qualitatively by finite element method. It also results in the relation of the starting point of corona discharge current. Corona discharge current makes minute current about some ${\mu}A$ between the electrodes by the strength of electric field. Also it occurs insulation destruction of gas, and it is developed to the shape of streamer by increase of the strength of electric field. We can find that the initial occurrence of streamer and contact probability of lightning can have advantage after researching the starting point of corona discharge current and discharge current of lightning striking point. This research demonstrates that the suggested HEC method is economically competitive as a lightning protection facility, and it takes a capably perfect role.