• Title/Summary/Keyword: Rocking Vibration

Search Result 28, Processing Time 0.024 seconds

Nonlinear Rocking Vibration Characteristics for Rigid Block Subjected to Horizontal Sinusoidal Excitation (수평방향의 정현파 가진을 받는 강체 블록의 비선형 록킹진동특성)

  • 정만용;김정호;김지훈;정낙규;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.3-12
    • /
    • 1999
  • This research concentrates on the influence of non-linearities associated with impact for the nonlinear rocking behavior of rigid block subjected to one dimensional sinusoidal excitation of horizontal direction. The transition of two governing rocking equations, the abrupt reduction in the kinetic energy associated with impact, and sliding motion of block. In this study, two type of rocking vibration system are considered. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation and sliding motion. The response analysis using non-dimensional rocking equation is carried out for the change of excitation parameters and friction coefficient. The chaos responses were discovered in the wide response region, particularly, for the case of high excitation amplitude and their chaos characteristics were examined by the time history, Poincare map, power spectra and Lyapunov Exponent of rocking responses. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. The bifurcation diagram and Poincare map were shown to be effective in order to understand chaos of rocking system.

  • PDF

A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence) (강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우))

  • 정만용;김정호;김선규;나기대;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

Rocking Vibration of Rigid Block Structure Accompaning Sliding Motion - In the Case of Two Dimensional Harmonic Excitation with Different Frequencies - (미끄럼운동을 동반하는 강체 블록 구조물의 로킹진동 - 수평방향과 수직방향의 여진진동수가 다른 경우에 대하여 -)

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.879-889
    • /
    • 2003
  • This research deals with the nonlinearities of rocking vibration associated with impact and sliding on the rocking behavior of rigid block under two dimensional sinusoidal excitation which has different frequencies in two excitation direction. The varied excitation direction influences not only the rocking response but also the sliding motion and the rocking response shape. Chaotic responses are observed in wider excitation amplitude region, when the frequencies in each excitation direction are different. The complex behavior of chaotic response, in the phase space, is related with the trajectory of base excitation and sliding motion.

Chaos on the Rocking Vibration of Rigid Block Under Two Dimensional Sinusodial Excitation (In the Case of No Sliding Occurrence) (2차원 정현파 가진을 받는 강체블록의 록킹진동에 있어서의 카오스 (미끄럼이 없는 경우에 대하여))

  • 정만용;김정호;김지훈;양광영;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This research deals with the non-linearities associated with impact and sliding for the rocking behavior of rigid block subjected to two dimensional excitation of horizontal and vertical direction. The non-linearities examined of impact between block and base: The transition of two governing rocking equations, the abrupt reduction in kinetic energy associated with impact. In this study, the rocking vibration system of two types are considered for several friction condition. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation at impact. The response analysis by non-dimensional rocking equation is carried out for the change of excitation amplitude. The chaos responses were discovered in the wide response region, particularly, in the case of high vertical excitation and their chaos characteristics are examined by Poincare map, power spectra and Lyapunov Exponent. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. Therefore, Poincare map will be a significant material in order to understand chaos of rocking system.

  • PDF

Chaotic Rocking Vibration of a Rigid Block with Sliding Motion Under Two-Dimensional Harmonic Excitation

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1040-1053
    • /
    • 2002
  • This research deals with the influence of nonlinearities associated with impact and sliding upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the effect of the impact between the block and the base, which involves an abrupt reduction in the system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially changed. Response analysis using a non-dimensional rocking equation was carried out for a variety of excitation levels and excitation frequencies. The chaos responses were observed over a wide response region, particularly, in the cases of high vertical displacement and violent sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic response, in phase space, is illustrated by the Poincare map. The distribution of the rocking response is described by bifurcation diagrams and the effects of sliding motion are examined through the several rocking response examples.

Chaotic Behavior on Rocking Vibration of Rigid Body Block Structure under Two-dimensional Sinusoidal Excitation (In the Case of No Sliding)

  • Jeong, Man-Yong;Lee, Hyun-;Kim, Ji-Hoon;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1249-1260
    • /
    • 2003
  • This present work focuses on the influence of nonlinearities associated with impact on the rocking behavior of a rigid body block subjected to a two-dimensional excitation in the horizontal and vertical directions. The nonlinearities in rocking system are found to be strongly dependent on the impact between the block and the base that abruptly reduces the kinetic energy. In this study, the rocking systems of the two types are considered : The first is an undamped rocking system model that disregards the energy dissipation during the impact and the second is a damped rocking system, which incorporates energy dissipation during the impact. The response analysis is carried out by a numerical method using a non-dimensional rocking equation in which the variations in the excitation levels are considered. Chaos responses are observed over a wide range of parameter values, and particularly in the case of large vertical displacements, the chaotic characteristics are observed in the time histories, Poincare sections, the power spectral density and the largest Lyapunov exponents of the rocking responses. Complex behavior characteristics of rocking responses are illustrated by the Poincare sections.

인공위성 반작용휠의 미소진동 측정 및 분석

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2004
  • In this paper, we briefly introduce the micro-vibration test bench of KARI and the test and analysis method of RWA(Reaction Wheel Assembly) micro-vibration. The micro-vibration of RWA is measured on a KISTLER dynamic plate which can measure the time signal of 6 DOF simultaneously up to 400Hz. Measured data are extensively evaluated with respect to the wheel spin rate to identify the complicate wheel dynamic characteristics, and the static/dynamic unbalances are estimated from the extracted first harmonic component as a part of evaluation process. The estimated static and dynamic unbalances. 0.79gcm and 17.4gcm² respectively. The structural resonance mode and two rocking modes observed as a results of its frequency analysis. Several higher order harmonic components observed, which come from its rotor shape as well as the wheel bearing characteristics.

  • PDF

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

Methodology on Improving Vibration Characteristics of Servo Write Fixture (서보라이트 픽스쳐의 진동 특성 개선 방법)

  • Yoon, Tae-Yong;Ku, C.P. Roger;Hanlon, Andrew K.;Taylor, Charles L.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.47-52
    • /
    • 2011
  • This paper presents a method to improve vibration characteristics of servo track write (STW) fixture. STW fixtures supported by flexible mounts are subject to various vibration sources. Using Finite element analysis (FEA) vibration modes of the fixture are identified. The FEA results suggest certain vibration modes be reduced through design change of flexible mounts to improve vibration responses of the fixture. Based on layered flexible mounts theory a parametric study on shear and bending stiffness is performed to obtain a suitable flexible mount design leading to increased resistance to rocking motion. Experiments confirm improvement of vibration characteristics and drive performance through new mounts design.