• Title/Summary/Keyword: Rockfill material

Search Result 52, Processing Time 0.021 seconds

Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements

  • Li, Shouju;Yu, Shen;Shangguan, Zichang;Wang, Zhiyun
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 2016
  • The hyperbolic stress-strain model has been shown to be valid for modeling nonlinear stress-strain behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill materials is a key problem for simulating dam deformations during both the dam construction period and the dam operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined from the triaxial compression experimental data. The investigation results show that the predicted strains provide satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by experimental investigation in a laboratory.

Application and Analysis of Field Test and Geophysical Exploration for Dynamic Material Properties of Rockfill Dam (사력댐 동적물성 추정을 위한 현장조사기법 적용 및 분석)

  • Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.352-359
    • /
    • 2005
  • In this study, seismic refraction survey and MASW at dam crest and down-hole test and cross hole test in the boring holes located in dam crest through the core are performed to fin out dynamic material properties, are needed to evaluate dynamic safety of rockfill dam using dynamic analysis method. From the field test and geophysical exploration, applied such as above, p-wave and s-wave velocity profile of each layer of dam body. Dynamic material properties, such as elastic modulus, shear modulus, poissong's ration, are obtained from p-wave and s-wave velocity profile and density profile from formation density logging test.

  • PDF

Sensitivity Analysis of Rockfill Input Parameters Influencing Crest Displacement of CFRD Subjected to Earthquake Loading (지진하중을 받는 CFRD 정상부 변위에 영향을 미치는 사력재료 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.1-9
    • /
    • 2007
  • The purpose of this study is to carry out the quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of CFRD(Concrete-Faced Rockfill Dam) subjected to earthquake loading. The total 105 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake. 27 rockfill material property combinations obtained from large triaxial tests) on CFR type "D" dam in operation were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the results of sensitivity analysis, It was found that the crest settlement of the CFR type dam subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the maximum acceleration of each earthquake. Also, it was found that the horizontal displacement of the dam crest was highly affected by the shear modulus of rockfill material though the extent of effect on that was smaller than the settlement and the extent of effect depended on the input earthquakes and the maximum acceleration of each earthquake. On the contrary, it was found that the effect of friction angle was negligible.

Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam (물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델)

  • Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.

Application simulations as numerical laboratory for large diameter rockfill materials (대입경 락필재료에 대한 수치시험실 활용해석)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

A Case Study on Verification of Inverse Calculation of Dynamic Properties of Rockfill Zone using Microearthquake Records (댐 계측지진 활용 사력죤 물성 역산법 검증 사례 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.759-764
    • /
    • 2010
  • In this study, from the comparison of the results obtained by 3 dimensional dynamic analyses using the inverse-calculated properties and those by calculating using the real earthquake records, the inverse calculation method for obtaining the dynamic properties of rockfill materials was verified. The fundamental frequency of the dam was determined by analyzing the response spectrum of observed records. By repeated dynamic analyses for various shear moduli of rockfill material, the shear moduli in the rockfill zone that satisfy the relationship between the fundamental frequency obtained by analysis of the observed records and that by numerical analyses were determined. Using the determined shear moduli, the 3 dimensional dynamic analyses for the dam were carried out and the result were compared with the real response characteristics on the crest of the dam.

  • PDF

Estimation of Settlement on the Crest of CFRD Subjected to Earthquake Loading Using Sensitivity Analysis (민감도분석을 통한 지진하중을 받는 CFRD 정상부 침하량 예측)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest settlement of CFRD (Concrete-Faced Rockfill Dam) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter from the results of sensitivity analysis, to show the quantitative variation of settlement at the crest of CFR type dam during earthquake with this input parameter, and to recommend the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading. The statistic characteristics of rockfill parameters which were obtained from large triaxial tests were evaluated. The total 108 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake, 27 rockfill material property combinations) on CFRD were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the sensitivity analysis, It was found that the crest settlement of the CFRD subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the magnitude of input acceleration. On the contrary, it was found that the effect of cohesion and friction angle of rockfill was negligible. From the results of sensitivity analysis and numerical analysis, the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading was recommended on condition that the rockfill shear modulus and simple dam information was known.

Modelling of Large Triaxial Test with Rockfill Materials by Distinct Element Method (개별요소법에 의한 락필재료의 대형삼축압축시험 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.111-120
    • /
    • 2006
  • In this research, numerical simulations by PFC considering discrete element method are conducted to predict experimental results of large triaxial compression test with rockfill material for dam construction. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. To predict stress-stain behavior of large triaxial test, discrete particle modelling is applied with micro parameters which are chosen by calibration process. It is expected that distinct particle modelling method could be used as a useful tool to investigate micro and macro behavior associated with geotechnical problems and develop a numerical laboratory.

Engineering Characteristics of Crushed Rockfill Material

  • Lee, Young-Huy
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.63-76
    • /
    • 1997
  • To investigate the engineering characteristics of crushed rockfill material, the large-scaled triaxial tests have been carried out, The rpckfill is made from the greywacke, and the 3 parallel gradations with different maximum particle size(dmu=38.1mm, 25.4mm and 19.1mm) were designed for the test. The dimension of the specimen is 300mm in diameter and 600mm in height, and the applied confining stress varied from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$. The test results show that the influence of the maximum particle size on the stress -strain r$51.6^{\circ}\; to\; 40.5^{\circ}$ when the confining stress increases from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$ The hyperbolic parameter values estimated from the test result for rockfill are much different from the recommended values by Duncan et. at(1980) for GW and GP material, especially in the $\phi$ ad K-values.

  • PDF

Shear Strength and One-dimensional Compression Characteristics of Granitic Gneiss Rockfill Dam Material (화강편마암 댐 축조재료의 전단강도 및 일차원 압축특성)

  • Kim Bum-Joo;Kim Yong-Seong;Shin Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.31-42
    • /
    • 2005
  • In this study, a rockfill-dam material was investigated on its shear strength and compressibility by performing large-scaled triaxial and oedometer tests. The rockfill material was compacted at two different compaction levels and sheared in triaxial compression at three different confining stresses. Also, rockfill samples were prepared to have three different grain size distributions but the same dry density. Each sample with a given grain size distribution was then compressed one-dimensionally in a large-scaled oedometer cell with and without soaking. The rockfill samples exhibited slightly different shear behaviors with the varying compaction and confining stress levels. The increase in the compaction level changed the behavior from contractive to dilative. Dilation decreased gradually with increasing confining stress, resulting in reduction in the peak shear strength. The large-scaled oedometer test results showed that particle breakages increased with increasing average particle sizes of the samples. Comparing the samples with different gradations, a relatively well-graded sample exhibited lower compressibility. For saturated samples, slightly higher deformations were observed, compared to dry samples. The values of tangent constrained modulis for the dry samples were larger by about 10 to 20$\%$, on the average, than those for the saturated samples.