• Title/Summary/Keyword: Rockfall Kinetic Energy

Search Result 9, Processing Time 0.023 seconds

A Study on Efficient Prevention of Rockfall using Rockfall Simulation Program (낙석 시뮬레이션 해석을 이용한 효율적인 낙석 방지에 대한 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Kim, Jin-Hwan;Son, Young-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.581-584
    • /
    • 2008
  • This study analyzed activity of rockfall and its effect factor by the shape and mass. We performed research on the kinetic energy distribution, velocity and bounce height according to the rockfall characteristics using rockfall simulation program in cut-slope. In addition, this study discussed how to utilize kinetic energy and bounce height of rockfall for efficient establishment of rockfall prevention fence which is a countermeasure to cut-slope.

  • PDF

Flexible Barrier System for Rockfall Protection (유연성 방호책을 이용한 철도변 낙석방호사례)

  • 최승일;유병옥;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.103-116
    • /
    • 2003
  • Rockfall Protection fence is one of the most common rockfall Protection methods in Korea. If rockfall protection fences are required along the road or railway, their location, height and capacity, in terms of the maximum kinetic energy that they can absorb, should be specified. Within this paper, the best practice of rockfall barrier is introduced. Modern rockfall simulations as a means to define risks, protection requirements, dynamic loading and height of potential structures and selection of appropriate placement is presented. Technical possibilities of rockfall barriers and their actual limits are presented. Safety concepts based on probabilistic approaches are proposed. Recent studies peformed in other countries show that Flexible Barriers are also a feasible system to stop and retain debris flows. Finally an outlook onto further development is given.

  • PDF

A Study on the Analysis of Rockfall Simulation using Rockfall Characteristics (낙석 특성을 고려한 낙석 시뮬레이션 해석 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Park, Hyuck-Jin;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.719-724
    • /
    • 2005
  • It conducted an analysis and the research against kinetic energy distribution, velocity and bounce height according to rockfall characteristics using rockfall simulation program in cut-slope. This study considered kinetic energy and bounce height of rockfall for efficient establishment of rockfall protection fencefence that is countermeasure in cut-slope.

  • PDF

A Study on Efficient Design of Rockfall Prevention Netting (낙석방지망의 효율적 설계를 위한 기초연구)

  • Lee, Jundae;Park, Soobeom;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.53-59
    • /
    • 2014
  • In order to obtain basic data for reasonable design of rockfall prevention net unreasonably being designed according to experiences, this paper determined a standard cross section and analyzed the effects of parameters such as inclination and height of slope faces, rockfall weight, separation distance on rockfall behaviors such as bounce height, kinetic energy and passage rate. The weight of rockfall changed from 400 kg to 700 kg and then to 1,000 kg. With the height of 20 m as the standard, the test was conducted with the inclination at $63^{\circ}$ and $55^{\circ}$ which may affect rockfall behaviors. Analysis was made while changing the fall height of rockfall from 3 m to 15 m and then to 20 m, thereby analyzing and evaluating changes in maximal kinetic energy occurring in the base of slope. According to the analysis result, in designing a rockfall prevention wire net, a design considering various conditions including inclination of the slope, expected size or weight of rockfall, situation of the slope and the shape of rockfall, and rockfall trace is judged necessary beyond the current uniform application.

Evaluation of Structural Performance for High Strength Rockfall Protection Fence according Reinforcement of H-Beam using Numerical Analysis (수치해석을 통한 지주 보강에 따른 고강도 낙석 방지울타리 구조성능 평가)

  • Hyunwoo Jin;Sanghoon Seo;Duho Lee;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • In Korea, the rockfall prevention fence is designed with 50kJ of rockfall kinetic energy in order to prevent damages such as falling rocks and landslides. In the case of rockfall kinetic energy, it is highly dependent on the shape of the slope on which it occurs. As a previous study, a fence performance evaluation was conducted for 100kJ rockfall impact energy using ETAG 27. However, previous studies have focused on newly installed rockfall prevention fences. In this study, a reinforcing materials was installed on the existing rockfall prevention fence through numerical analysis, and the structural performance of the high-strength rockfall prevention fence capable of defending against 120kJ of rockfall kinetic energy was evaluated.

Flexible Barrier System for Rockfall Protection (유연성 원리를 이용한 낙석방호시스템)

  • Choi Seung-Il;Lee Chang-Ho;Kim Duk-Bong
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.68-81
    • /
    • 2003
  • Rockfall protection fence is one of the most common rockfall protection methods in Korea. If rockfall protection fences are required along the road or railway, their location, height and capacity, in terms of the maximum kinetic energy that they can absorb, should be specified. Within this paper, the best practice of rockfall barrier is introduced. Modern rockfall simulations as a means to define risks, protection requirements, dynamic loading and height of potential structures and selection of appropriate placement is presented. Technical possibilities of rockfall barriers and their actual limits are presented. Safety concepts based on probabilities approaches are proposed. Recent studies performed in other countries show that Flexible Barriers are also a feasible system to stop and retain debris flows. Finally an outlook onto further development is given.

  • PDF

Rockfall Behavior with Catchment Area Condition (포집공간 조건에 따른 낙석의 거동)

  • Lee, Jundae;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Various development works inevitably increase cutting slopes due to land use, and many of trails managed by different authorities are being deteriorated by long-term weathering. Collapse of slopes causes unavoidable damage of property and loss of lives because of its uncertainty and difficulty in predicting its occurrence. In order to overcome the unavoidability, America, Japan, and several European nations analyze the kinetic energy and moving distance when rocks of upper slope move along the inclined plane, via field tests and computerized interpretation of the test results. Also, they are making efforts to develop measures with which the kinetic energy of the rocks moving along the slope is absorbed and fails to reach to specific structures. However, domestic researches just focus on fragmentary prediction of rockfall using existing programs, and there have been few approaches to identify interpretation methods appropriate for domestic cases or determination of parameters. In this context, we in this study defined rockfall types and affecting factors and analyzed effects of parameters using a general-purpose rockfall simulation program to understand principles of rockfall and to estimate effects of various parameters.

Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests (현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가)

  • 구호본;박혁진;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.111-121
    • /
    • 2001
  • Rockfall protection fences are used for diminishing rockfall damage in roads side slopes. In order to install the fences in effective way, the conditions of rock slopes and total predicted impact energy of fa11ing rock should be considered. However, the fences have been constructed without any consideration for lithology, height and slope angle of rock slope in Korea. In addition, the information about the performance of the protection fences, which should be evaluated by in-situ test or laboratory test in order to check out the practical use in the field, is not available. Therefore, in design manual for the rockfall protection fence, the specific details for the installation of this type of fence are not provided yet. The full sized rockfall in situ test was carried out for the calculation of falling energy of rock and the evaluation of the maximum energy absorbing capacity of fence. For this test, the rock slopes whose heights are about 20 m and dip angle of 65 degree, have been chosen. This is because those geometries are mean height and slope angle of most road cut slopes along Korean national highway. Based on the preliminary simulation procedure, four different sizes of concrete ball (0.7, 1.3, 2.3 and 4.3 ton) were prepared and flour different types of protection fence were constructed. The results of this test provide information about the maximum energy absorbing capacity of the fence, kinetic energy of rockfall and restitution coefficient, and these results can be utilized in the establishment of rockfall fence design and construction manual.

  • PDF

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.