• 제목/요약/키워드: Rocket noise

검색결과 50건 처리시간 0.025초

KSR-III 로켓의 추진기관에 의한 음향 하중 예측 (Prediction of Acoustic Loads Generated by KSR-III Propulsion System)

  • Park, Soon-Hong;Chun, Young-Doo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.384.1-384
    • /
    • 2002
  • Rocket propulsion systems generate very high level noise (acoustic loads), which is due to supersonic jet of rocket propulsion system. In practice, the sound power level of rocket propulsion systems is over 180 ㏈. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunctioning of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. (omitted)

  • PDF

KSR-III 로켓의 추진기관에 의한 음향 하중 예측 및 측정 (Prediction and Measurement of Acoustic Loads Generated by KSR-III Propulsion System)

  • 박순홍;전영두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.853-856
    • /
    • 2002
  • Rocket propulsion systems generate very high-level noise (acoustic loads), which is due to supersonic jet emitted by rocket engine. In practice, the sound power level of rocket propulsion systems is over 180 dB. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunction of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. A popular prediction method is based on NASA SP-8072. This method was used to predict the acoustic loads of KSR-III rocket. Measurement of acoustic loads by KSR-III propulsion system was performed in the stage qualification test. The predicted results were compared with the measured ones.

  • PDF

KSR-III Rocket 종합 시험 설비에서 발생한 열-음향 불안정 현상에 관한 연구 (A study of acoustic coupled instability at the propulsion test facility for KSR-III rocket)

  • 조상연;강선일;한상엽;조인현;오승협;이대성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.636-640
    • /
    • 2002
  • Acoustic coupled combustion instability, which is one of the most undesirable phenomena in the development of liquid propellant rocket engine, can cause serious damage to a rocket itself, and must be avoided by all means. Unfortunately, KSR-III rocket went through combustion instability during engine start at the propulsion test article No.2. To resolve the problem, time sequence (cyclogram) has been changed, and baffle system has been applied. In consequence of change, stable combustion was achieved.

  • PDF

KSR-III Rocket 종합 추진 시험 설비에서 발생한 열-음향학적 진동의 특성 (The characteristics of thermo-acoustic oscillation happened at PTA-II of KSR-III rocket)

  • S. Cho;S. Kang;Kim, Y.;I. Cho;S. Oh;Lee, D.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.364.2-364
    • /
    • 2002
  • Thermoacoustic oscillation, which stems from phase correlation between unsteady heat release and acoustic fluctuation, can cause severe vibration and incite the excessive local heat transfer inside the rocket engine. It is very important to understand and prevent this phenomenon in the way of rocket engine development. In this study, the propulsion test facility of KSR-III, which is the first liquid propellant rocket developed by KARI, will be introduced. and the characteristics of thermoacoustic ocillation occurred at the facility will be examined.

  • PDF

유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석 (Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects)

  • 김요한;김동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

고체추진기관용 물분사 소음디퓨저의 설계 및 제작 (Design and Manufacturing of the Diffuser with Water Injection for the Solid Rocket Motor Noise Reduction)

  • 이정열;이지형;이성웅;고현;조용호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.299-302
    • /
    • 2011
  • 고체추진기관의 초음속 제트 속에서는 다양한 소음들이 발생된다. 본 연구에서는 로켓 모타의 배기가스에 물을 분사하고, 디퓨져 및 스택을 설치하여 초음속 제트에서 발생되는 소음을 억제할 수 있는 장치를 설계 및 제작하는 기술을 확보하는데 있다. 물분사 소음디퓨저를 연소시험용 로켓 모타에 적용하여 약 20dB의 소음저감효과를 얻었다.

  • PDF

KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중 (Vibration Loads on KSR-III during Ground Transportation and Handling)

  • 전영두;조병규;박동수;황승현;김준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.250-254
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III(KSR: Korea Sounding Rocket) and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. This work is concerned with the generation of criteria and prediction of transportation and handling loads for KSR-III. The results show that the shipping container is well designed to satisfy the design requirements. The maximum vibration level recorded during whole transportation and handling for KSR-III is less than 2g, the criteria of KSR-III movement condition.

  • PDF

우주비행체 분리장치 작동에 의한 충격현상 모의 시험기 개발 (Development of Shock Testing M/C to Simulate Pyro-technic Device Explosion of Space vehicle)

  • 김홍배;오진호;문상무;우성현;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.581-586
    • /
    • 2000
  • Explosively activated pyro-technic device is used to release exhausted rocket booster or payloads at prescribed times in the rocket's flight. It creates pyro-shock environment that rocket or payload components must survive. With the shock spectra acquired from flight data, laboratory test should be performed before flight to check whether all of component can sustain the shock environment. The pyro-shock environment simulation was created by the resonance fixture response to a projectile impact. Desired shock spectra is realized by adjusting the natural frequency of resonance plate and the velocity of impact hammer. This paper describes the development process of Pyro-shock testing machine, which is designed and tested by Korean engineers, to verify components of Korean Sounding Rocket(KSR-3) and the other Korean space vehicle. Both analytical and experimental techniques are introduced in this paper.

  • PDF

KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중 (Vibration Loads on KSR-III during Ground Transportation and Handling)

  • Chun, Young-Doo;Cho, Byoung-Gyu
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.330.2-330
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. (omitted)

  • PDF

초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법 (A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise)

  • 박태영;주현식;장인만;강승훈;엄원석;신상준;박정원
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.364-370
    • /
    • 2020
  • 우주 발사체의 초음속 플룸으로부터 발생하는 고강도 소음은 발사체에 음향하중으로 작용하여 전장품이나 탑재 위성의 오작동 및 고장을 유발한다. 음향하중을 발생시키는 로켓/제트소음의 예측은 초음속 난류 유동(소음원) 예측을 위한 전산유체해석과 음향(소음 전파) 해석이 결합된 모델이 주로 사용된다. 이때, 유동해석 시 계산영역 경계면에서 발생하는 반사파 아티팩트를 제거하기 위해 경계조건 외에 추가적으로 흡수층(sponge layer)과 같은 모델링이 적용된다. 하지만, 해석 대상에 따라 흡수층의 파라미터 최적화 연구가 선행되어야 하고 더 큰 계산 영역을 필요로 하기 때문에, 이는 해석시간 증가의 주요 요인이 된다. 이에 본 논문에서는 계산효율을 증대시키기 위해 흡수층 대신 유동해석 결과에 존재하는 반사파 아티팩트를 두 개의 마이크로폰 기법을 기반으로 하여 제거하는 방법을 처음으로 제안하고, 이를 실제 소형 초음속 제트소음 해석 결과에 적용하였다.