• Title/Summary/Keyword: Rocket engine test

Search Result 393, Processing Time 0.027 seconds

Study of Injector Damage on Fuel-rich Gas Generator (연료 과농 가스발생기의 분사기 손상에 관한 연구)

  • Moon Il-Yoon;Lee Kwang-Jin;Lim Byoung-Jik;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.197-201
    • /
    • 2006
  • In the development process of a fuel-rich gas generator using kerosene and LOx for a 30 tonf class liquid rocket engine, a heat damage occurred at the LOx post of swirl coaxial injectors used in the gas generator and the problem has been examined. To prevent the heat damage, injectors are redesigned to have an increased recess while maintaining internal mixing, which minimizes recirculation region to prevent anchoring of the flame in the recirculation region. The combustion test results of the sub-scale gas generator showed that this scheme can prevent heat damage of the LOx post in the swirl coaxial injectors of the fuel-rich gas generator.

  • PDF

Combustion Chamber Development for Suppression of Combustion Instability in a Gas Generator at a Liquid Rocket Engine (액체로켓엔진용 가스발생기에서 연소불안정 방지를 위한 연소실 개발)

  • Ahn Kyu-Bok;Lee Kwang-Jin;Lim Byoung-Jik;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • The results of combustion performance test of fuel-rich gas generator with dual swirl injectors are described. By changing simulating duct and recess number(RN) of the injectors, we inspected whether the combustion instability took place. When the injectors of RN = 0.5 were used, combustion instabilities could be reduced using the simulating duct. However, the effect of the simulating duct on the gas generator with the injectors of RN = 1.5 was not significant.

  • PDF

Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber (막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구)

  • Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2006
  • The effects of the changes of a film cooling mass flow rate and operating conditions on wall heat flux characteristics of a subscale calorimetric combustion chamber were investigated by experiment and numerical analysis. At the nominal operating condition, with the film cooling mass flow rate being 10.5 percent of a main fuel mass flow rate, maximum heat flux at the nozzle throat was measured to be 30 percent lower than that without the film cooling. For the relatively higher mixture ratio and chamber pressure condition, maximum heat flux at the nozzle throat was increased by 31 percent compared to that of the nominal condition test without film cooling.

An Experimental Study on Flow Characteristics of Cavitation Venturi (캐비테이션 벤츄리의 유동 특성에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • A cavitation venturi is a device that allows a liquid flow rate to be fixed or locked independent of a downstream pressure and has been successfully used in a liquid rocket engine system which requires a stable propellant flow rate. In the present research, four cavitation venturis which have same dimensions except for converging inlet angle and diverging outlet angle, were designed and manufactured. Flow rates through each venturi and upstream/downstream pressures were measured by changing the pressures. From the experimental data, the discharge coefficients and critical pressure ratios were calculated for each venturi. It was found that the inlet and outlet angles of the cavitation venturi affected the discharge coefficient, and the outlet angle influenced on the critical pressure ratio.

Development of Propellant for Turbopump Pyro Starter (터보펌프 시동기용 추진제 개발)

  • Song, Jong-Kwon;Choi, Sung-Han;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-10
    • /
    • 2009
  • The development and evaluation of solid propellant were performed for the turbopump pyro starter, which start up the liquid propellant rocket engine for the Space Launch Vehicle (SLV). Requirements for the turbopump pyro starter propellant include the production of low flame temperature, low burning rate and nontoxic gas to protect the mechanical corrosion or air pollution. This study describes the development of the solid propellant composition which is based on PCP binder. DHG (Dihydroxy glyoxime), which has advantages of oxygen balance and ignition, was used as coolant. The mechanical properties and burning rate of the propellants were measured. Finally, static fired test was performed to prove the possibility of development.

  • PDF

A Numerical Study on Acoustic Tuning of Quarter-Wave Resonators in a Model Combustion Chamber (연소실에서 1/4파장 공명기의 주파수 동조에 대한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.281-284
    • /
    • 2009
  • Acoustic tuning frequency of quarter-wave resonators is investigated numerically to suppress combustion instability in a liquid rocket engine. A quarter-wave resonator is adopted, which was designed from the cold acoustic test for optimal damping condition. First, in a model combustion chamber scaled down from a full-scale chamber, reactive flow filed is analyzed numerically and acoustic-pressure responses are examined. Next, thermodynamic properties in the resonators are predicted. Based on the data, frequency tuning method is studied. The optimum tuning length of each resonator is proposed and thereby, sufficient damping is produced.

  • PDF

Mechanical Properties Evaluation of GTAW for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 GTAW 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Rhee, Byung-Ho;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.619-622
    • /
    • 2009
  • INCONEL 718합금은 상온, 고온 및 저온환경에서 기계적 특성이 아주 우수하다. 상온에서의 모재 강도는 약 900MPa이며, 열처리 후 시효경화처리에 의해 강도가 약 1300MPa까지 증가한다. 이러한 INCONEL 718합금의 기계적 특성은 시험결과에서도 유사한 값을 나타내었고, GTAW 용접부의 상온 기계적 특성도 모재보다 우수한 강도를 나타내었다. 또한 저온에서의 기계적 특성은 모든 시험조건에서 상온보다 높은 강도를 나타내었으며, 열처리 모재시편과 용접시편은 1400MPa에 달하는 고강도를 나타내었다. 이러한 결과를 바탕으로 INCONEL 718합금의 저온 기계적 특성이 우수한 것을 증명하였고, 용접성 또한 모재의 특성과 같이 상온 및 저온 특성이 우수한 것을 알 수 있었다. INCONEL 718 합금과 STS 316L의 이종접합의 경우에도 $-100^{\circ}C$환경의 인장강도가 상온보다 300MPa 이상 증가하는 것을 알 수 있었다. 따라서, INCONEL 718합금은 $100^{\circ}C$이하부터 일정온도까지는 기계적 특성이 계속 증가 할 것으로 사료되며, 극저온 고압 상태로 공급되는 산화제 배관 제작에 적합한 소재로 판단된다.

  • PDF

Structural Evaluations of the Bellows for a Gas-generator Lox Shut-off Valve (가스발생기 산화제 개폐밸브 주름관 구조 평가)

  • Yoo, Jae-Han;Lee, Joong-Youp;Lee, Soo-Yong;Lim, Hyeong-Tae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • The structural analyses and experimental results for the bellows of a gas-generator liquid oxygen shut-off valve were presented. The bellows experiences axial compression and external high pressure loadings at cryogenic temperatures. The analyses were performed using EJMA (Expansion Joint Manufacturing Association) standard and the commercial FE (finite element) analysis program, Abaqus v6.9, at room and cryogenic temperatures. The spring modulus, the induced stress and the expected fatigue life of the bellows were compared respectively. The effects by the contact and the material plasticity on the FE analysis results were also analyzed. Also, FE analyses related to a burst test were presented.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

추력 30톤급 연소기의 냉각 성능

  • Cho, Won-Kook;Lee, Soo-Yong;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.197-204
    • /
    • 2004
  • A design of regenerative cooling system of 30 ton level thrust combustion chamber for ground test has been performed. The 1-D design code has been validated by comparing with the heat flux of the NAL calorimeter for high chamber pressure and water-cooling performance of the ECC engine of MOBIS. The present design code has been confirmed to predict accurately the heat flux and water-cooling performance for high chamber pressure condition. The maximum hot-gas-side wall temperature is predicted to be about 720 K without thermal barrier coating and the coolant-side wall temperature is less than the coking temperature of RP-1. The coolant temperature rises nearly 100 K with thermal barrier coating when Jet-A1 is used as coolant.

  • PDF