• Title/Summary/Keyword: Rocket engine

Search Result 989, Processing Time 0.026 seconds

A study on the characteristic of fuel shutoff valve for 75 $ton_f$ combustion chamber (75톤 연소기용 연료개폐밸브의 특성에 대한 고찰)

  • Lee, Joong-Youp;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • Fuel shutoff valve of a combustion chamber controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been predicted flow coefficient of the valve by Fluent(ver. 12.0) CFD analysis. Various results from the prediction and the analysis have been compared with experiments.

Structural Evaluations of the Bellows for a Gas-generator Lox Shut-off Valve (가스발생기 산화제 개폐밸브 주름관 구조 평가)

  • Yoo, Jae-Han;Lee, Joong-Youp;Lee, Soo-Yong;Lim, Hyeong-Tae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • The structural analyses and experimental results for the bellows of a gas-generator liquid oxygen shut-off valve were presented. The bellows experiences axial compression and external high pressure loadings at cryogenic temperatures. The analyses were performed using EJMA (Expansion Joint Manufacturing Association) standard and the commercial FE (finite element) analysis program, Abaqus v6.9, at room and cryogenic temperatures. The spring modulus, the induced stress and the expected fatigue life of the bellows were compared respectively. The effects by the contact and the material plasticity on the FE analysis results were also analyzed. Also, FE analyses related to a burst test were presented.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Flow Visualization of Flowfield Structures around an Aerospike Nozzle using LIF and PSP

  • NIIMI Tomohide;MORI Hideo;TANIGUCHI Mashio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.75-80
    • /
    • 2004
  • Aerospike nozzles have been expected to be used for an engine of a reusable space shuttle to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structures in any cross sections around clustered linear aerospike nozzles are visualized and analyzed, using laser induced fluorescence (LIF) of nitrogen monoxide seeded in the carrier gas of nitrogen. Since flow field structures are affected mainly by pressure ratio, the clustered linear aerospike nozzle is set inside a vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 200. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly- IBM -co-TFEM is also applied to measurement of the complicated pressure distribution on the spike surface, and to verification of contribution of a truncation plane to the thrust. Finally, to examine the effect of the sidewalls attached to the aerospike nozzle, the flow fields around the nozzle with the sidewalls are compared with those without sidewalls.

  • PDF

Effect of Injector Geometry on Cryogenic Jet Flow (극저온 제트 유동에 대한 분사기 형상의 영향)

  • Cho, Seong-Ho;Park, Gu-Jeong;Khil, Tae-Ock;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Characteristics of cryogenic single jet flow were investigated. Liquid nitrogen was injected into a high-pressure chamber and formed single jet. Ambient condition around jet was changed from subcritical to superctirical condition of nitrogen. Injector geometries also were changed. A shape of the jet and core diameter were measured by flow visualization technique, and core spreading angle was calculated. Flow instability was found at atmospheric pressure condition. As ambient pressure increased, core spreading angle was increased and maintained after certain pressure.

추력 30톤급 연소기의 냉각 성능

  • Cho, Won-Kook;Lee, Soo-Yong;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.197-204
    • /
    • 2004
  • A design of regenerative cooling system of 30 ton level thrust combustion chamber for ground test has been performed. The 1-D design code has been validated by comparing with the heat flux of the NAL calorimeter for high chamber pressure and water-cooling performance of the ECC engine of MOBIS. The present design code has been confirmed to predict accurately the heat flux and water-cooling performance for high chamber pressure condition. The maximum hot-gas-side wall temperature is predicted to be about 720 K without thermal barrier coating and the coolant-side wall temperature is less than the coking temperature of RP-1. The coolant temperature rises nearly 100 K with thermal barrier coating when Jet-A1 is used as coolant.

  • PDF

Numerical Study of Cavitating flow around Axysimmetric and 2D Body in Cryogenic Fluid (극저온 유체내에서 운행하는 물체 주위의 공동현상 해석에 관한 연구)

  • Lee, Se-Young;Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.309-312
    • /
    • 2007
  • The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.

  • PDF

Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber (액체로켓엔진 연소기의 성능평가를 위한 가압식 연소시험설비의 구성 요구조건)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Sub-system requirements of a pressure-fed hot-firing test facility for performance assessment of a Liquid Rocket Engine(LRE) thrust chamber using Liquid oxygen and kerosene were described. These requirements were based on the experience of construction and operation of the ground hot-firing test facility which was used for the development of the KSR-III and a 30 tonf-class LRE thrust chamber. So it is expected that this paper is used as a basic material and an itemized previous review statement for the design and construction of a large hot-firing test facility.

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong Rok;Kim, Jae-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.34-39
    • /
    • 2014
  • A study is analyzed on the design factor of center-body diffuser and performed on conceptual design of center-body diffuser with computational fluid dynamic. The flow field of center-body diffuser is calculated using axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulencemodel. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure and the design factors. The counter flow jet on cone-tip of the center-body is applied for thermal protection system in the center-body diffuser.

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure (초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2013
  • Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.