• Title/Summary/Keyword: Rocket engine

Search Result 988, Processing Time 0.024 seconds

Moment Evaluations of Gimbal Expansion Joints for Liquid Rocket Engine Propellant Pipes (액체로켓엔진 배관 김발 신축 이음 모멘트 평가)

  • Yoo, Jaehan;Moon, Ilyoon;Lee, Soo Yong;Choi, Chunghyeon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2013
  • The gimbal expansion joint for the pipe line of a liquid rocket engine undergoes high pressure and cyclic rotational displacement loadings. In present study, the moment analyses and tests of the internal-type gimbal expansion joint for the engine were performed. The moment components due to spring stiffness, friction and lateral force were obtained using a analytic method and their sums at low and high pressures were compared with the test results. Also, applying a $MoS_2$ dry film lubricant to the pin of a external hinge expansion joint, it is tested that the galling of the pin was removed and the friction coefficient was decreased for low pressures.

Evaluation by Rocket Combustor of C/C Composite Cooled Structure for Combined-cycle Engine

  • Takegoshi, Masao;Ono, Fumiei;Ueda, Shuichi;Saito, Toshihito;Hayasaka, Osamu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.804-809
    • /
    • 2008
  • In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2900 K and heat flux to the combustion chamber wall was about 9 $MW/m^2$. No thermal damage was observed on the stainless steel tubes which were in contact with the C/C composite materials. Results of the heating test showed that such a metallic-tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure(also as a heat exchanger), as well as indicating the possibility of reducing the amount of the coolant even if the thermal load to the engine is high. Thus, application of the metallic-tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined cycle engine is expected.

  • PDF

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine (7톤급 액체로켓엔진 연소기 개념설계)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.454-456
    • /
    • 2012
  • Conceptual design results of a thrust chamber for a 7 tonf-class liquid rocket engine of KSLV-II 3rd stage were described. The engine system for KSLV-II 3rd stage is pump-fed system, the thrust chamber has vacuum thrust of 6.9 tonf, vacuum specific impulse of 336.9 sec, chamber pressure of 70 bar, nozzle expansion ratio of 94.5, total propellant mass flow rate of 20.5 kg/s, mixture ratio(O/F) of 2.45. The thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene.

  • PDF

Conceptual Design and Manufacturing Scheme of a Gas Generator for 7 tonf Class Rocket Engine (7톤급 로켓엔진 가스발생기 개념설계 및 제작계획)

  • Lim, Byoung-Jik;Kim, Moon-Ki;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.451-453
    • /
    • 2012
  • Conceptual design and manufacturing scheme of a gas generator for 7 tonf class rocket engine were described. The combustion chamber pressure, O/F ratio, and total flow rate were decided to be 6 MPa, 0.321, and 1 kg/s respectively in consequence of the engine system design. Based on the parameters conceptual design of the gas generator was carried out and its outer dimension was about ${\Phi}100{\times}250mm$. Most parts of the gas generator to be jointed together by brazing or TIG welding and, if possible, the strength and leakproof tests are to be conducted in every step for checking the welding section.

  • PDF

Development of MATLAB/Simulink Modular Simulation Toolbox for Space Shuttle Main Engine (MATLAB/Simulink 모듈화 기반 우주왕복선 주엔진 시뮬레이션 툴박스 개발)

  • Cho, Woosung;Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.50-60
    • /
    • 2019
  • This paper introduces the development of a toolbox for the Space Shuttle Main Engine(SSME) based on MATLAB/Simulink. A mathematical model of rocket engine creation and validation can be a complex process, the development of a rocket engine toolbox simplifies this process, thereby facilitating engine performance optimization as well as new design development. The mathematical modeling of the SSME dealt with in this paper is formed by 32 first-order differential equations derived from seven governing equations. We develop the toolbox for the SSME classifying each module according to the engine components. Further, we confirm the validity of the toolbox by comparing the results of the simulation obtained using the toolbox with those obtained using the original simulation of the engine.

Ignition Transient Mechanism in an Entire Integrated Rocket Ramjet Engine (램제트 엔진의 점화 천이에 관한 연구)

  • ;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.12-20
    • /
    • 2000
  • The numerical analysis, including chemical reaction of an entire ramjet engine is studied to understand the ignition transient mechanism and the dynamic characteristics of the Integrated Rocket Ramjet System comprehensively. Details of how a subsonic combustion environment is established from the supersonic ram air after removal of the inlet port cover, are examined during the ignition transient. Various physical processes are investigated systemically, including ignition, flame propagation, flame dynamics, and vorticity evolution.

  • PDF

Liquid Rocket Engine Development Participation State and Vision of Korean Air (대한항공의 액체로켓엔진 개발 참여현황과 비전)

  • Kim, Woo-Kyum;Kim, Seung-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.601-602
    • /
    • 2009
  • 대한항공은 2003년 소형위성발사체(KSLV-I) 사업 참여와 함께 2005년부터는 국내 액체로켓엔진 개발관련 한국항공우주연구원 주관의 각종 개발에 참여하고 있다. 본 논문에서는 현재 국내에서 진행중인 75톤급 액체로켓엔진 시스템 선행개발관련 대한항공이 수행하고 있는 분야별 업무의 소개와 함께 대한 항공의 향후 추진 계획을 다루고자 한다.

  • PDF

A Study of Transitional Performance with Change of Inlet Pressure in Liquid Propellant Rocket Engine (액체로켓엔진에서 입구압 변화에 따른 엔진 성능 변화 고찰)

  • Moon, Yoon-Wan;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.103-106
    • /
    • 2008
  • In this work it was studied that the effect on sub-component of engine considering change of engine inlet pressure caused by variable acceleration during flight of launcher. Also the transitional performance was predicted according to variable acceleration. Engine inlet pressure was defined as summation of propellant head in tank, ullage pressure and pressure difference of line, etc. Therefore consumption of propellant and acceleration of launcher led to change of engine inlet pressure, which affected on discharge pressure of pumps. This effect changed mass flow rate of gas generator and main combustor hence it was observed that engine performance was changed definitely.

  • PDF