• Title/Summary/Keyword: Rocket combustor

Search Result 163, Processing Time 0.018 seconds

Theoretical-Numerical Modeling of High-Frequency Combustion Instabilities with Linear Waves (선형 고주파 연소불안정의 이론-수치적 예측)

  • Lee, G.Y.;Yoon, W.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.125-135
    • /
    • 2001
  • Aiming at a direct, also more realistic, prediction of unstable waves evolving in the combustion chamber, present paper introduces a new analytical method. Instability equations are freshly formulated, and solve the time-integrated ODEs for amplification factors to find the transients of pressure and velocity fluctuations. Present numerical approach requires no separate treatments for nonlinearities. Preliminary numerical experiments for unstable waves in quasi-one-dimensional rocket combustor, show validity and applicability of present model, and promise for its practical use. Study for the complex models for physics, especially velocity- and pressure-coupled responses, and inclusion of multi dimensionality remains as future tasks.

  • PDF

A study on the combustion performance with Hydrogen Peroxide / Kerosene (과산화수소/ 케로신을 추진제로 한 200N급 엔진의 연소 성능에 관한 연구)

  • Kim, Young-Mun;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.61-64
    • /
    • 2009
  • A study on the variation of combustion performance by oxidizer/fuel ratio was conducted. Shower head type injector was used. Injector propelled by liquid kerosene and liquid hydrogen peroxide. The designed operation condition for thrust and combustion pressure were 200N and 10bar. It is found that optimum oxidizer/fuel ratio.

  • PDF

Characteristics of Gel Propellant Spray from a Pintle Injector (핀틀 인젝터를 사용한 젤 추진제 분무 특성 연구)

  • Lee, Keonwoong;Song, Wooseok;Hwang, Joohyun;Hwang, Yongseok;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.82-88
    • /
    • 2019
  • Shear coaxial injectors were commonly used in rocket engine combustor. They showed good combustion performance. However it is not easy to control the thrust. Pintle injectors were not as popular as the coaxial injectors so far, they have a great advantage over the coaxial injectors. That is, it is relatively easy to control the thrust. Spray characteristics of gel type propellant from movable sleeve pintle injector were investigated. Water with 0.05% of Carbopol 940 was used as gel simulant instead of kerosene gel combined with Thixarol ST for academic purpose. Experiments were performed in various temperature, pressure and pintle opening condition. The results were compared with neat liquid spray. It is also verified that the capabilites of the injector by adjusting the pintle opening.

Predicting the Frequency of Combustion Instability Using the Measured Reflection Coefficient through Acoustic Excitation

  • Bae, Jinhyun;Yoon, Jisu;Joo, Seongpil;Kim, Jeoungjin;Jeong, Chanyeong;Sohn, Chae Hoon;Borovik, Igor N.;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.797-806
    • /
    • 2017
  • In this study, the reflection coefficient (RC) and the flame transfer function (FTF) were measured by applying acoustic excitation to a duct-type model combustor and were used to predict the frequency of the combustion instability (CI). The RC is a value that varies with the excitation frequency and the geometry of the combustor as well as other factors. Therefore, in this study, an experimentally measured RC was used to improve the accuracy of prediction in the cases of 25% and 75% hydrogen in a mixture of hydrogen and methane as a fuel. When the measured RCs were used, an unstable condition was correctly predicted, which had not been predicted when the RCs had been assumed to be a certain value. The reason why the CI occurred at a specific frequency was also examined by comparing the peak of the FTF with the resonance frequency, which was calculated using Helmholtz's resonator analysis and a resonance frequency equation. As the CI occurred owing to the interaction between the perturbation in the rate of heat release and that in the pressure, the CI was frequent when the peak of the FTF was close to the resonance frequency such that constructive interference could occur.

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

Construction of High-Pressure Pressurized Liquid Nitrogen Supply Facilities (고압의 가압식 액체질소 공급 설비 구축)

  • Shin, Minkyu;Oh, Jeonghwa;Kim, Seokwon;Ko, Youngsung;Chung, Yonggahp
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.26-32
    • /
    • 2020
  • In this study, a facility was constructed to supply liquid nitrogen to simulate combustion instability in a liquid rocket combustor. The pressurization and supply performances were predicted and verified through different experiments. The liquid nitrogen supply system was composed of a pressurized supply system, and a dome regulator was used to adjust the pressure of the pressurant. A cavitation venturi was used to control the mass flow rate of liquid nitrogen. The condition of liquid nitrogen supply was a mass flow rate of 2.55 kg/s and the venturi inlet pressure was above 100 bar. Based on the initial experiment, it was observed that the predicted amount of the pressurant was not sufficiently supplied and the target pressure was not supplied due to a drop in tank pressure. Through the modification of the established facilities, the target mass flow rate was successfully supplied and the cryogenic liquid nitrogen supply facility was verified.

Fuel-Rich Combustion Characteristic of a Combined Gas Generator (혼합식 가스발생기의 연료과농 연소특성)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.593-600
    • /
    • 2015
  • In this study, a combined hybrid rocket system is newly introduced which has characteristics of both gas generators and afterburner type hybrid rockets. In particular, a combined gas generator utilizing solid fuel and liquid/gas oxidizer was designed as a primary combustor of the system. Combustion tests were carried out with various equivalence ratio affected by parameters such as fuel length, oxidizer flow rate, fuel port diameter and fuel type. In general, fuel-rich gas generator produces low combustion gas temperature to meet the temperature requirement and the target temperature was transiently set less than 1600 K. Since it was found that controlling parameters showed limited effects on the change of equivalence ratio, mixture of $O_2$ and $N_2$ as an oxidizer was additionally introduced. As a result, a combined gas generator successfully produced combustion gas temperature of less than 1600 K Future studies will carry out more combustion tests to attain fuel-rich combustion gas temperature less than 1200 K, which was a temperature requirement of a gas generator system in the previous studies.

Development of Analysis Code for Evaluation of Acoustic Stability of Rocket Engine Combustor with Various Designs (로켓엔진 연소기 설계의 음향안정성 평가를 위한 해석코드 개발)

  • Kim, Seong-Ku;Kim, Hong-Jip;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.110-116
    • /
    • 2004
  • In this study, a three-dimensional finite-element analysis code has been developed to predict acoustic behaviors in rocket combustion chambers and to quantitatively evaluate acoustic stability margins for various designs with passive stabilization devices such as baffle and acoustic resonators. As a validation case, computations are made for combustion chambers with/without a hub-and-six-blade baffle which are developed in the KSR-III Development Program. Compared with experimental results from ambient acoustic test, the numerical approach reasonably well predicts acoustic pressure responses to acoustic oscillation excitation for both unbaffled and baffled combustion chambers and yields quantitatively good agreement for acoustic damping effects of baffle installation in terms of damping factor ratio and resonant frequency shift.

Combustion Performance of a Full-scale Liquid Rocket Thrust Chamber Using Water as Coolant (실물형 액체로켓엔진 연소기 물냉각 연소시험 성능결과)

  • Han Yeoung-Min;Kim Jong-Gyu;Moon Il-Yoon;Lee Kwang-Jin;Seo Seong-Hyeon;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.187-192
    • /
    • 2006
  • The combustion performance tests of a 30 tonf-class full-scale combustion chamber performed with water as a coolant were described. The combustion chamber has chamber pressure of 53bara and propellant flow mass rate of 90kg/s. Since it was first firing test for 30tonf-class combustion chamber using channel cooling, water coolant mass flow .ate of 35kg/s and 18kg/s were performed which correspond to 110% of kerosene design volume flow rate and equivalent cooling performance of kerosene. The test results are described and the results showed that the water cooling performance of this combustion chamber is sufficient and the firing test is feasible using the kerosene as a coolant.

  • PDF

Combustion Performance of a Full-scale Liquid Rocket Thrust Chamber Using Kerosene as Coolant (실물형 액체로켓엔진 연소기 케로신냉각 연소시험 성능결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Moon, Il-Yoon;Seo, Seong-Hyeon;Choi, Hwan-Seok;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • The combustion performance tests of a 30 tonf-class full-scale combustion chamber performed with kerosene as a coolant were described. The combustion chamber has chamber pressure of 53bara and propellant flow mass rate of 90kg/s. Since it was first firing test for 30tonf-class combustion chamber using kerosene cooling, kerosene coolant mass flow rate of 32kg/s which correspond to 120% of design mass flow rate were performed. Then, the firing test with kerosene mass flow rate of 25kg/s were successfully performed. The test results are described and the results showed that the kerosene cooling performance of this combustion chamber is sufficient and the firing test with regenerative cooling is feasible.

  • PDF