• Title/Summary/Keyword: Rock stress

Search Result 954, Processing Time 0.021 seconds

A Study on Shear Behaviors for the Rock Joint in the Constant Normal Stiffness Condition (일정수직강성(CNS) 조건에서 절리면 전단거동에 관한 연구)

  • Kim Yong-Jun;Lee Young-Huy;Kim Sun-Ki;Kim Chu-Hwa
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.330-337
    • /
    • 2005
  • Apart from the geometric features of the rock joints, the shear characteristics of rock mass subject to shear force are also significantly affected by the boundary conditions in the neighborhood of the rock mass. The boundary conditions of the rock mass can be classified into 4 categories according to the stress state of the rock joint, of which the constant normal load (CNL) is the most used for shear test and produces the lowest shear strength and different behavior. In this study, the shear behavior under constant normal stiffness condition was able to replicated by the graphic method normalized by the test results under constant normal stress condition.

Deformation Characteristics of Artificially Fracture Joins of Granite under Normal and Shear Loading (수직 및 전단하중하에서 화강암 인공절리의 변형특성)

  • 김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.142-151
    • /
    • 1993
  • In this study, the deformation characteristics of atrtificially fractured joints of granite under normal and shear loading were investigated. To obtain the characteristics of joint deformation, compression and shear tests were performed in the laboratory on three different sizes of rock specimens. The rock used in the experimens was Iksan granite. Joints were produced artificially by fracturing using the apparatus for generating extension-joint. Joint normal deformability was studied by conducting cyclic loading tests on the joints. Joint closure varied non-linearly with normal stress through cyclic loadings. As normal stress increased, the joints gradually reached a state of maximum joint closure. The relation between normal stress and joint closure for mated and unmated joints was well described by the hyperbolic and exponential function, respectively. Joint shear deformability was studied by performing direct shear tests under normal stresses on the joints. it was shown that the behaviour in the prepeak range was non-linear and joint shear stiffness depended on the size of specimen and the normal stress.

  • PDF

Rock Mechanics Advances for Underground Construction in Civil Engineering and Mining

  • Kaiser, Peter K.;Kim, Bo-Hyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.3-16
    • /
    • 2008
  • The underground construction and mining are facing many geomechanics challenges stemming from, geological complexities and stress-driven rock mass degradation processes. Brittle failing rock at depth poses unique problems as stress-driven failure processes often dominate the tunnel behaviour. Such failure processes can lead to shallow unravelling or strainbursting modes of instability that cause difficult conditions for tunnel contractors. This keynote address focuses on the challenge of anticipating the actual behaviour of brittle rocks in laboratory testing, for empirical rock mass strength estimation, and by back-analysis of field observations. This paper summarizes lessons learned during the construction of deep Alpine tunnels and highlights implications that are of practical importance with respect to constructability. It builds on a recent presentation made at the $1^{st}$ Southern Hemisphere International Rock Mechanics Symposium held in Perth, Australia, in September this year, and includes results from recent developments.

  • PDF

Tunnel lining load with consideration of the rheological properties of rock mass and concrete

  • Lukic, Dragan C.;Zlatanovic, Elefterija M.;Jokanovic, Igor M.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Rheological processes in the rock mass for the stress-strain analysis are quite important when considering the construction of underground structures in soft rock masses, particularly in case of construction in several stages. In the analysis, it can be assumed that the reinforced concrete structure is slightly deformable in relation to the rock mass, and the rheological stress redistribution happens at the expense of the elements of rock mass. The basic elements of rheological models for certain types of rock mass and analysis of these models are presented in the first part of this paper. The second part is dedicated to the analysis of rheological processes in marl rock mass and the influence of these processes on the reinforced-concrete tunnel structure.

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Numerical Evaluation of the Rock Damaged Zone Around a Deep Tunnel (손상모델을 이용한 심부터널 주변암반의 손상영역 평가)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.99-108
    • /
    • 2002
  • The nonlinear-brittle-plastic model derived from experiments as well as elastic and elasto-plastic models was applied to the analysis of the rock damaged zone around a highly stressed circular tunnel. The depths of stress redistribution and disturbed zone as well as the characteristic behaviors predicted from each numerical model were compared, As the magnitudes and stress differences of in situ stresses increased, influences of stress redistribution and stress disturbance on un(tiled region of rock mass also intensified. As a result, larger stress redistribution and disturbed zone as well as greater deviatoric stress and displacement were obtained by the nonlinear-brittle-plastic model rather than other conventional models such as elasto-plastic and elastic models. from such results, it was concluded that as the magnitudes and stress differences of in situ stresses increased, larger rock damaged zone might be predicted by the nonlinear-brittle-plastic model. Therefore, it is thought that the damage analysis may be indispensable far highly stressed tunnels.

Fast Analysis of Rock Block Behavior on Underground Opening considering Geostatic Stress Conditions (지체응력조건을 고려한 지하공동 주변부 암석블록의 신속한 거동 안정성 분석)

  • Kang, Il-Seok;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.64-74
    • /
    • 2019
  • Behavior of a rock block consisting of rock joints during excavation of an underground opening is an important factor for the mechanical stability of the opening. In this study, the behavior of a rock block under different geostatic stress and joint property conditions was analyzed quantitatively. The behavior of the rock block analyzed by 3DEC numerical analysis was compared with that of the theoretical calculation, and the error between the theoretical value and the numerical analysis result was analyzed under various geostatic stress and joint property conditions. The result of the stability analysis of a rock block showed less than 5% of error with numerical simulation result, which verified the applicability of the purposed analytic solution.

Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints (절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.95-106
    • /
    • 2009
  • Numerical analysis of the progressive failure of a rock slope was conducted using a 3-D rock joint element considering fracture mechanics and subcritical crack growth of asperities in the rock joints. Even though the stress state in the rock slope is not changing, the elapse of time causes subcritical crack growth to break asperities in the joints. The increase of broken asperities causes failure of joints in the rock slope and the increase of failed joints results in failure of a jointed rock slope. As a result, the progressive failure of a jointed rock slope due to the gradual breaking of small asperities along joints generated by subcritical crack growth occurs at a lower stress than if rock failure occurred by exceeding the static strength or fracture toughness.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.