• 제목/요약/키워드: Rock mechanical properties

Search Result 347, Processing Time 0.025 seconds

The influence of residual stress on the engineering behaviour of rock (잔류응력이 암석의 공학적 거동에 끼치는 영향)

  • 박형동
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.363-375
    • /
    • 1995
  • Critical literature review in this study revealed that there can be a significant influence of the residual stress on the engineering properties of rock. The review also showed that few number of research works on the quantification of the influence was attributed to the limitation of the two classical measurement techniques, viz, X-ray diffraction and mechanical relaxation method. In this study, a new way of approach was sought based on the assumption that residual stress up to the failure. A series of hoop tests conducted onthe samples from the limb of Carboniferous Limestone in Clevedon, England, revealed that (i) there is no preferential orientations of microcracks and minerals which have been widely believed as the main source of the strength anisotropy of rock; (ii) the anisotropy of the tensile strength of the limestone results from the influence of the residual stress; (iii) since jointing commenced within the fold, residual stored strain energy has been released preferentially in the direction perpendicular to the major joints(o$^{\circ}$ and 90$^{\circ}$); (ⅳ) during the hoop test making it much easier to create tensile fracture in these directons, viz 45$^{\circ}$ and 135$^{\circ}$)was released during the hoop test making it much easier to create tensile fracture in these directions, viz 45$^{\circ}$and 135$^{\circ}$;(v) the direction in which the stored strain energy may be presumed to be the least, required the greatest work to cause failure.

  • PDF

Rock TBM design model derived from the multi-variate regression analysis of TBM driving data (TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.531-555
    • /
    • 2011
  • This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability.

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

A Numerical Study on the Rock Fragmentation by TBM Cutter Penetration (TBM 커터 관입에 의한 암석 파쇄의 수치해석적 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • Rock fragmentation technique by cutter penetration has widely been used in the mechanical tunnel excavation. Microcracks propagate and interact because of locally concentrated high stress induced by cutter penetration. which is caused by heterogeneity of rocks. In this study Weibull distribution function and degradation index are used to consider the strength heterogeneity of a rock and the degradation of rock properties after failure. Through the numerical analyses, it is shown that the lateral pressure has an important influence on the rock fragmentation. In the single cutter penetration, large chips are formed as lateral pressure increase. The cutter spacing is also an important factor that affects the rock fragmentation in the double cutter penetration. The fragmentation efficiency of the double cutter penetration is better when cutter spacing is 70 mm than 40 mm and 100 mm. From the results, it is expected that this study can be applied to a TBM tunnel design by understanding of chipping process and mechanism of rock due to cutter penetration.

The Case Study of Rock Treatment Method for the Fractured Rock Foundation of Underground Roadway Structure (기반암의 파쇄대 특성을 고려한 지하차도 기초 보강사례)

  • Yoon, Ji-Nam;Yang, Sung-Don;Lee, Geun-Ha;Park, Sa-Won;Jung, Hun-Chul
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • The rock treatment methods for improving bearing capacity and reducing settlement of the underground roadway structure foundation on fractured rock was studied in this paper. Also, effective reinforcement scheme was evaluated by numerical analysis for the application to the practical construction. Various in-situ and laboratory tests were executed systematically at Yeongi-goon, Ohoongchungnam-do, Korea, for the purpose of defining the physical and mechanical properties of rock. Consequently the effective treatment methods insuring the bearing capacity of fractured rock were proposed. In addition, the adequate reinforcing depth of the comparatives measure, such as double rod, triple rod injection methods and micropile, were investigated from the case study. Finally, the most effective construction scheme with the consideration of safety and economical aspects were proposed by using numerical analysis(Plaxis ver. 8.2).

Mineralogical and Mechanical Properties of some Rocks as Aggregates and Their Suitabulity for Concrete (골재용 암석의 광물학적 및 역학적 특성과 콘크리트용으로서의 적합성 연구)

  • 진호일;민경원;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 1998
  • This study was designed, firstly, to determine the mineralogical and chemical characteristics of some rock aggregates, secondly, to offer interrelationships between those and mechanical properties, and thirdly, to evaluate their suitability for concrete aggregates. Mineralogical, chemical, physical and mechanical characteristics of the studied rock aggregates indicate that granite from BJ quarry and banded gneisses from KB. HI and SK quarry, and quartzite from the Hongcheon riverside are not proper to cement concrete aggregates because of quartz's potential possibility of alkali-silica reaction, and limestone in SY quarry is proper to asphalt concrete aggregates owing to dolomite causing alkali-carbonate reaction. Augen gneiss and diorite from KB and SA quarry, respectively, are to be not suitable for concrete aggregates because of biotite contents, but augen gneiss in HI quarry and gneisses in Hongcheon riverside are proper to concrete aggregates because of mineralogical and mechanical characteristics.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Influence of mechanical properties of ultra-dental stone on setting methods (경화방법이 치과용 경석고의 기계적 특성에 미치는 영향)

  • Im, Yong-Woon;Hwang, Seong-Sig;Kim, Sa-Hak;Choi, Je-Woo;Jeong, Su-ha;Kim, Si-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the influence of mechanical properties of various ultra-dental stone by setting methods. Methods: 240 cylinder specimens($10mm{\times}20mm$) were prepared from three ultra-dental stones(Gemma, Die keen and Fuji rock; n = 80) in accordance with the manufacturers' recommendations. Half of the specimens of each stone(n = 40) were dried in open air within a room temperature; the other half(n = 40) underwent in a silicone rubber mold in open air for 30 minutes and then were dried in a microwave oven for 10 minutes to 600W. Compressive strength(CS), compressive modulus(CM) and diametral tensile strength(DTS) conducted until fracture using Instron 5966 at each of the following periods: 1 and 24 hours from mixing. One-way analysis of variance and Scheffe's post hoc test were performed for statistical comparisons at a significance level of P<.05. Results: The CS and CM values in all dental stone indicated highest after 24h(54.25 MPa < ) than the values for specimens dried in microwave method. The DTS values revealed the highest microwave method. However, in 24h, FJ(Fu-ji rock) and GM(Gemma) had lower mechanical properties than air. Conclusion : Within the limitations of this study, CS did not influence by microwave method but DTS affected according to the setting.

Soil Mechanical Properties and Stability Analysis on Fill Slope of Forest Road (임도성토사면(林道盛土斜面)의 토질역학적(土質力學的) 특성(特性)과 안정해석(安定解析))

  • Ji, Byoung Yun;Oh, Jae Heun;Cha, Du Song
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.275-284
    • /
    • 2000
  • This study was carried out to analyze the mechanical properties of soil and the slope stability on the fill slope of forest road constructed in the regions which consist of igneous and metamorphic rock area. The results were summarized as follows. 1) Soil type by Unified Soil Classification System(USCS) was classified as SW in soil slope, GP in weathered rock slope, GP in soft rock slope for both types of parent rock, but gravelly soil slopes in igneous and metamorphic rock area were classified as SP and GW, respectively. 2) Dry unit weight was $1.34g/cm^2{\sim}1.59g/cm^2$, specific gravity 0.57~0.61, and void ratio 0.66~0.93 in the case of igneous rock area, a dry unit weight was $1.35g/cm^2{\sim}1.51g/cm^2$, specific gravity 2.67~2.77, and void ratio 0.78~1.01 in the case of metamorphic rock area. 3) The strength parameters such as internal friction angle(${\phi}$) and cohesion(c) were selected and tested for slope stability analysis. ${\phi}$ and c of soil in igneous rock area were within the range of $29.51^{\circ}{\sim}41.82^{\circ}$ and $0.03kg/cm^2{\sim}0.38kg/cm^2$, respectively, and $21.43^{\circ}{\sim}41.43^{\circ}$ and $0.05kg/cm^2{\sim}0.44kg/cm^2$ in metamorphic rock area, respectively. 4) Result of the slope stability analysis of forest road showed that, in the weathered rock slope of igneous rock and the weathered rock and soil slope of metamorphic rock area, the possibility of slope failure was high as safety factor was below 1.0.

  • PDF

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao Kong;Sixiang Zhu;Wenrui Zhang;Xiaolei Sun;Wei Lu;Yankun Ma
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.233-244
    • /
    • 2023
  • With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.