• Title/Summary/Keyword: Rock joint

Search Result 536, Processing Time 0.022 seconds

Grouting Effect of Rock Joint (암반절리면에서의 그라우팅 효과)

  • 이영남;천병식;김대영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.265-270
    • /
    • 2000
  • AESTRACI: The shmr behior of sawtoothed artrjicial joints grouted with cement milk rm investiguted in the lahotconstant normal stress conditions. Tests were amducted on joints with asperities h i n g inclinations cf 16.7" and 26.6" ,strengths h i n g 15MPa and 47MPa under a given nmge of n o d stresses wrying frcm 0.76 to 1.g MPa md at a freepitching, rolling and dihtmuy. Results show that the gect of asperities on shmr strength increme is signifamt up to as,to grout thidness (t/a) mtio 4 0.3-1.0. Increme of ahesim is the nmn muse cf shmr strength increme in cemmtoothed artificial iointsed artificial ioints

  • PDF

Development of Direct Shear Apparatus with Different Loading Conditions for Rock Joints and Its Application Tests (하중조건별 시험이 가능한 암석 절리편 전단시험의 개발 및 적용시험)

  • 천병식;김대영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.161-172
    • /
    • 2000
  • 자연암석절리 및 인공 절리에 대하여 일정수직응력제어, 일정 수직하중제어 그리고 무한 강성제어가 가능한 암석 절리면 전단기 시험기를 개발하였다. 이 시험기는 전단변위에 의한 첩촉면적의 변화량을 계산하여 하중변화량을 조절하여 일정수직응력상태를 유지한다. 수직하중에 따른 시험기 강성에 의한 변화향이 제어 프로그램 내에서 제어되어 순수한 시편의 변위량을 출력하도록 하였다. 전단하중에 따른 시험기 강성에 의한 변위량은 상, 하부 전단상자의 상대변위 측정으로 최소화하였다. 전단거동 중의 자유도는 전당방향에 대하여 수평이도, 연직이동, 피칭, 롤링이 가능하도록 하였다. 자연절리면을 모사한 석고시편에 대하여 일정 수직응력 제어, 일정수직하중제어 그리고 무한 강성제어 조건으로 시험하여 제어상태 검증 및 비교를 하였다. 또한 경사각이 16.7˚와 22.6˚인 톱니형 시편에 대하여 시험한 결과 경사각 16.7˚와 22.6˚는 JRC로 10과 15를 나타내었으며, 첨두팽창각이 첨두전단강도에서 발생되며, Barton의 모델과 잘 일치함을 보였다.

  • PDF

Study on the Source Area of the Stones from Stone-cultural Properties -Geomorphological and Petrological Approach for the Iksan Area- (석조문화재의 석재공급지에 관한 연구 -익산 지역에 대한 지형학적 및 암석학적 접근-)

  • Cho Ki-Man;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.24-37
    • /
    • 2005
  • In this study we examined the geomorphological and geological characteristics of the granite landforms in the Iksan area. Moreover we investigated the source areas of stones which are used to build the Mieruksaji west stone pagoda. Joint is most identifiable geomorphological and geological structure in the Iksan area. Direction of J1 joint appears to be N71°E∼EW, and that of J2 joint ranges N20°W∼N20°E. Cross-pattern joint is predominant in the study area, and linen.-pattern vertical joint is also observed. Tor and corestone are easily found as geomorphological features in the study area. Corestones forming for are almost 2∼3 m across and 2∼3 m or over 5 m high. Their hardness is mainly of hammer bounce. Tower-type and castle-type of for are characteristic in the Mireuksan granites. Other geomorphological features such as tafoni, gnamma are also observed in the study area. Petrographical and geochemical features of the stones used for the Mireuksaji west stone pagoda are compared with those of the granites cropped out nearby, and indicate that the stones from the Mieruksaji west stone pagoda are quite similar to the Mireuksan granites. In the Mireuksan we can easily find lots of old traces for rock cutting.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

Deterioration Diagnosis and Source Area of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea (감은사지 서탑의 풍화훼손도 진단 및 석재의 산지추정)

  • Lee Chan Hee;Lee Myeong Seong;Suh Mancheol;Choi Seok-Won;Kim Man Gap
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.569-583
    • /
    • 2004
  • The rock properties of the West pagoda in the Gameunsaji temple site are composed mainly of dark grey porphyritic granodiorite with medium grained equigranular texture and developed with small numerous dioritic xenoliths. These xenoliths occurred with small holes due to different weathering processes. As a weathering results, the rock properties of this pagoda occur wholly softened to physical hardness because of a complex result of petrological, meteorological and biological causes. Southeastern part of the pagoda deteriorated seriously that the surface of rock blocks showed partially exfoliations, fractures, open cavities in course of granular decomposition of minerals, sea water spray and crystallization of salt from the eastern coast. The Joint between blocks has small or large fracture cross each other, contaminated and corrupted for inserting with concrete, cement mortar, rock fragments and iron plates, and partially accelerated coloration and fractures. There are serious contamination materials of algae, fungus, lichen and bryophytes on the margin and the surface on the roof stone of the pagoda, so it'll require conservation treatment biochemically for releasing vegetation inhabiting on the surface and the discontinuous plane of the blocks because of adding the weathering activity of stones and growing weeds naturally by soil processing on the fissure zone. Consisting rock for the conservation and restoration of the pagoda would be careful choice of new rock properties and epoxy to reinforce for the deterioration surfaces. For the attenuation of secondary contamination and surface humidity, the possible conservation treatments are needed.

Geology and Landscape of Mt. Mudeung Province Park, Korea (무등산 도립공원의 지질과 경관)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • Mt. Mudeung is located in Gwangju city, Damyang-Gun, Hwasun-Gun and its round form give us the mood of soft and rich. Its location is $126^{\circ}06'-127^{\circ}01'E$ and $35^{\circ}06'-35^{\circ}10'N$ and its highest peak is Cheonwang-bong with the height of 1,187 m. The Gwangju city is located in the West of Mt. Mudeng and the mountain range with a small basin in its East. The pavilion such as the Soswaewon, Songganjeong, Sigyongjeong are distributed along the stream in the north of Mt. Mudeung. The mountain is formed from the volcanic activity, Gwangju cauldron during the Cretaceous. The top part of Mt. Mudeung is composed of dark gray quartz-andesite and its K-Ar whole rock age is $48.1{\pm}1.7Ma$. The composition of the north area, where the Wonhyosa temple is located, is micrographic granite, whereas the composition of south area is rhyolite mainly. The main ridge of Mt. Mudeung runs from North, starting from the Bukbong, to south, passing Cheonwangbong, Jangbuljae and ending Anyangsan. Geologic feature of the mountain includes volcanic landform, mountaineous landform, and stream landform. The Seosukdae, Ipseokdae, Gyubongam, which are main ridges and formed from volcanic activity, are composed of mainly columnar joint. Saeinbong and Majipbong in the south-west are composed of mainly cliff and dome. The typical erosion landform of the mountain has three different types of the weathering-cave, each of which reflect the property of the original rock. Four different area of wide block stream, they makes the geological feature of spring-water, though its scale is small compared to that of water fall.

Geomorphology and Geology of Mt. Deok on Bigeum Island, Shinan, Korea (신안 비금도 덕산의 지형 및 지질)

  • Chung, Chull-Hwan;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.552-560
    • /
    • 2017
  • This study investigates the development process of Mt. Deok on Bigeum Island, Shinan, on the basis of geomorphological and geological analyses. K-Ar dating was carried out on two samples of the acidic lapilli tuff developed in the study area, and the obtained K-Ar ages are $70.4{\pm}1.4$ and $76.9{\pm}1.5Ma$, which correspond to the Late Cretaceous (Campanian). Mt. Deok is surrounded by rock cliff, and various weathering microtopographic features, such as tafoni, tor and gnamma, are developed. Tafoni with diverse morphologic types is the most dominant feature, indicative of intense salt weathering. Geological characteristics such as porous tuff and joint have played an important role in the development of tafoni and rock cliff. Geomorphology and geology of Mt. Deok reflect paleoenvironmental change and interaction between human and nature in the coastal area.

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.

Experimental and numerical investigation on bearing mechanism and capacity of new concrete plug structures

  • Weng, Yonghong;Huang, Shuling;Xu, Tangjin;Zhang, Yuting
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.459-468
    • /
    • 2019
  • The stability and safety of concrete plug structure of diversion tunnel is crucial for the impoundment of upstream reservoir in hydropower projects. The ongoing Wudongde hydropower plant in China plans to adopt straight column plugs and curved column plugs to replace the traditional expanded wedge-shaped plugs. The performance of the proposed new plug structures under high water head is then a critical issue and attracts the attentions of engineers. This paper firstly studied the joint bearing mechanism of plug and surrounding rock mass and found that the quality and mechanical properties of the interfaces among plug concrete, shotcrete, and surrounding rock mass play a key role in the performance of plug structures. By performing geophysical and mechanical experiments, the contact state and the mechanical parameters of the interfaces were analyzed in detail and provide numerical analysis with rational input parameters. The safety evaluation is carried out through numerical calculation of plug stability under both construction and operation period. The results indicate that the allowable water head acting on columnar plugs is 3.1 to 7.4 times of the designed water head. So the stability of the new plug structure meets the design code requirement. Based on above findings, it is concluded that for the studied project, it is feasible to adopt columnar plugs to replace the traditional expanded wedge-shaped plugs. It is hoped that this study can provide reference for other projects with similar engineering background and problems.